【題目】為調(diào)查中國及美國的高中生在“家”、“朋友聚集的地方”、“個人空間”這三個場所中感到最幸福的場所是哪個,從中國某城市的高中生中隨機抽取了55人,從美國某城市高中生中隨機抽取了45人進行答題。中國高中生的答題情況:選擇“家”的高中生的人數(shù)占,選擇“朋友聚集的地方”的高中生的人數(shù)占,選擇“個人空間”的高中生的人數(shù)占,美國高中生的答題情況:選擇“家”的高中生的人數(shù)占,選擇“朋友聚集的地方”的高中生的人數(shù)占,選擇“個人空間”的高中生的人數(shù)占。
(1)請根據(jù)以上調(diào)查結(jié)果將下面的2X2列聯(lián)表補充完整,并判斷能否有95%的把握認為戀家(在家里感到最幸福)與國別有關(guān);
在家里感到最幸福 | 在其他場所感到最幸福 | 總計 | |
中國高中生 | |||
美國高中生 | |||
總計 |
(2)從被調(diào)查的不“戀家”的美國高中生中,用分層抽樣的方法隨機選出4人接受進一步調(diào)查,再從4人中隨機選出2人到中國交流學(xué)習(xí),求2人中含有在“個人空間”感到最幸福的高中生的概率。
| 0.050 | 0.025 | 0.010 | 0.001 |
3.841 | 5.024 | 6.635 | 10.8 |
附:
【答案】(1)有95%的把握認為戀家與國別有關(guān)(2)p=
【解析】
(1)根據(jù)題意填寫列聯(lián)表,計算觀測值,對照臨界值,即可得出結(jié)論;
(2)根據(jù)分層抽樣原理,利用列舉法求出基本事件的件數(shù),計算所求的概率值.
(1)由題意,中國高中生的答題情況:選擇“家”的高中生的人數(shù)為人,則選擇“其他場所”的高中生的人數(shù)為人,美國高中生的答題情況:選擇“家”的高中生的人數(shù)為人,則選擇“其他場所”的高中生的人數(shù)占人,可得的列表:
在家里感到最幸福 | 在其他場所感到最幸福 | 總計 | |
中國高中生 | 22 | 33 | 55 |
美國高中生 | 9 | 4 | 45 |
總計 | 31 | 69 | 100 |
所以,
所以有95%的把握認為“戀家”與國別有關(guān).
(2)用分層抽樣的方法抽取4人,從被調(diào)查的不“戀家”的美國高中生中選出4人,其中含有在“個人空間”的有1人,分別設(shè)為,
從中抽取2人,共有:,共有6種抽法,
其中含有“個人空間”共有:,共有3種,
所以2人中含有在“個人空間”感到最幸福的高中生的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知梯形如圖(1)所示,其中, ,四邊形是邊長為的正方形,現(xiàn)沿進行折疊,使得平面平面,得到如圖(2)所示的幾何體.
(Ⅰ)求證:平面平面;
(Ⅱ)已知點在線段上,且平面,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式ax2-(2a+1)x+2<0,其中a∈R.
(1)當(dāng)a=1時,求原不等式的解集;
(2)當(dāng)a≥0時,求原不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險公司對一個擁有20000人的企業(yè)推出一款意外險產(chǎn)品,每年每位職工只要交少量保費,發(fā)生意外后可一次性獲得若干賠償金,保險公司把企業(yè)的所有崗位共分為三類工種,從事這三類工種的人數(shù)分別為12000,6000,2000,由歷史數(shù)據(jù)統(tǒng)計出三類工種的賠付頻率如下表(并以此估計賠付概率):
已知三類工種職工每人每年保費分別為25元、25元、40元,出險后的賠償金額分別為100萬元、100萬元、50萬元,保險公司在開展此項業(yè)務(wù)過程中的固定支出為每年10萬元.
(1)求保險公司在該業(yè)務(wù)所或利潤的期望值;
(2)現(xiàn)有如下兩個方案供企業(yè)選擇:
方案1:企業(yè)不與保險公司合作,職工不交保險,出意外企業(yè)自行拿出與保險公司提供的等額賠償金賠償付給意外職工,企業(yè)開展這項工作的固定支出為每年12萬元;
方案2:企業(yè)與保險公司合作,企業(yè)負責(zé)職工保費的70%,職工個人負責(zé)保費的30%,出險后賠償金由保險公司賠付,企業(yè)無額外專項開支.
請根據(jù)企業(yè)成本差異給出選擇合適方案的建議.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱臺中,上底面邊長為4,下底面邊長為8,高為5,點分別在上,且.過點的平面與此四棱臺的下底面會相交,則平面與四棱臺的面的交線所圍成圖形的面積的最大值為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2-(2m+1)x+m.
(1)若方程f(x)=0有兩個不等的實根x1,x2,且-1<x1<0<x2<1,求m的取值范圍;
(2)若對任意的x∈[1,2],≤2恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點,焦點在軸上的橢圓的離心率為,過左焦點且垂直于軸的直線交橢圓于兩點,且.
(Ⅰ)求的方程;
(Ⅱ)若直線是圓上的點處的切線,點是直線上任一點,過點作橢圓的切線,切點分別為,設(shè)切線的斜率都存在.求證:直線過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知對任意的實數(shù),都有:,且當(dāng)時,有.
(1)求;
(2)求證:在上為增函數(shù);
(3)若,且關(guān)于的不等式對任意的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓:()與拋物線:的一個公共點,且橢圓與拋物線具有一個相同的焦點.
(Ⅰ)求橢圓及拋物線的方程;
(Ⅱ)設(shè)過且互相垂直的兩動直線,與橢圓交于兩點,與拋物線交于兩點,求四邊形面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com