平行四邊形ABCD中AB=1,AD=2,∠DAB=60°,設(shè)
AB
=
a
AD
=
b

(1)把
AC
BD
a
,
b
向量來表示;
(2)求
AB
AC
的值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,平面向量及應(yīng)用
分析:(1)由向量的平行四邊形法則和三角形法則,得到向量AC,BD;
(2)將所求式化為向量a,b的式子,再由數(shù)量積的定義和性質(zhì),即可得到.
解答: 解:(1)
AC
=
AB
+
AD
=
a
+
b
;
BD
=
AD
-
AB
=
b
-
a
;
(2)
AB
AC
=
AB
•(
AB
+
AD

=
AB
2
+
AB
AD
=1+1×2×cos60°=1+2×
1
2

=1+1=2.
點(diǎn)評(píng):本題考查向量的加法、減法和數(shù)量積的運(yùn)算,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有一段地鐵從它的本站出發(fā)沿線有6個(gè)停車站,當(dāng)它離開本站時(shí),列車上有10個(gè)人,每個(gè)人都在其6個(gè)站點(diǎn)之一下車,而且在每一個(gè)車站至少有一個(gè)人下車,有多種方法可以使這樣的事情發(fā)生?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)是定義在R上的函數(shù),并且對(duì)任意的實(shí)數(shù)x,y都滿足f(x+y)=f(x)•f(y).當(dāng)x>0時(shí),f(x)>1,f(1)=2.
(1)求f(0)和f(3)的值;
(2)證明f(x)是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知斜率為1的直線l,過橢圓
x2
3
+
y2
2
=1的右焦點(diǎn)F2,交橢圓于A,B兩點(diǎn),求弦長AB和△ABF1的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,M,N分別是空間四邊形ABCD的棱AB,CD的中點(diǎn),試判斷向量
MN
與向量
AD
,
BC
是否共面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是菱形,且PB=PD.
(1)求證:BD⊥PC;
(2)若平面PBC與平面PAD的交線為l,求證:BC∥l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m<
t2+4
3-2t
,t∈[0,1],求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角△ABC中,角A、B、C的對(duì)邊長分別為a、b、c,向量
m
=(cosC+sinC,1),
n
=(cosC-sinC,
1
2
),且
m
n

(1)求角C的大小;
(2)若邊c=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin
π
2
x,g(x)=2-
3
4
|x-3|,x∈[-1,7],則函數(shù)h(x)=f(x)-g(x)的所有零點(diǎn)之和為( 。
A、6B、12C、16D、18

查看答案和解析>>

同步練習(xí)冊(cè)答案