已知點(diǎn)A(1,t,-1)關(guān)于x軸的對(duì)稱點(diǎn)為B,關(guān)于xOy平面的對(duì)稱點(diǎn)為C,則BC中點(diǎn)D的坐標(biāo)為________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:填空題
在平面直角坐標(biāo)系xOy中,設(shè)過原點(diǎn)的直線l與圓C:(x-3)2+(y-1)2=4交于M、N兩點(diǎn),若|MN|≥2,則直線l的斜率k的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-1直線的傾斜角與斜率、直線方程(解析版) 題型:填空題
已知點(diǎn)P在直線x+2y-1=0上,點(diǎn)Q在直線x+2y+3=0上,PQ中點(diǎn)為M(x0,y0),且y0>x0+2,則的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-7立體幾何中的向量方法(解析版) 題型:解答題
如圖,四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點(diǎn).
(1)證明:B1C1⊥CE;
(2)求二面角B1-CE-C1的正弦值;
(3)設(shè)點(diǎn)M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-7立體幾何中的向量方法(解析版) 題型:選擇題
如圖所示,ABCD-A1B1C1D1是棱長(zhǎng)為6的正方體,E、F分別是棱AB、BC上的動(dòng)點(diǎn),且AE=BF.當(dāng)A1、E、F、C1共面時(shí),平面A1DE與平面C1DF所成二面角的余弦值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-6空間向量及運(yùn)算(解析版) 題型:填空題
已知2a+b=(0,-5,10),c=(1,-2,-2),a·c=4,|b|=12,則以b,c為方向向量的兩直線的夾角為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-6空間向量及運(yùn)算(解析版) 題型:選擇題
已知向量=(2,4,5),=(3,x,y),若∥,則( )
A.x=6,y=15 B.x=3,y=
C.x=3,y=15 D.x=6,y=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-4直線、平面平行的判定及性質(zhì)(解析版) 題型:選擇題
已知α,β是兩個(gè)不同的平面,給出下列四個(gè)條件:
①存在一條直線a,a⊥α,a⊥β;
②存在一個(gè)平面γ,γ⊥α,γ⊥β;
③存在兩條平行直線a,b,a?α,b?β,a∥β,b∥α;
④存在兩條異面直線a,b,a?α,b?β,a∥β,b∥α.
可以推出α∥β的是( )
A.①③ B.②④ C.①④ D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-7數(shù)學(xué)歸納法(解析版) 題型:解答題
若不等式++…+>對(duì)一切正整數(shù)n都成立,猜想正整數(shù)a的最大值,并證明結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com