用1,2,3,4,5,6組成六位數(沒有重復數字),要求任何相鄰兩個數字的奇偶性不同,且1和2相鄰.這樣的六位數的個數是 (用數字作答).
【答案】分析:欲求可組成符合條件的六位數的個數,只須利用分步計數原理分三步計算:第一步:先將3、5排列,第二步:再將4、6插空排列,第三步:將1、2放到3、5、4、6形成的空中即可.
解答:解析:可分三步來做這件事:
第一步:先將3、5排列,共有A22種排法;
第二步:再將4、6插空排列,共有2A22種排法;
第三步:將1、2放到3、5、4、6形成的空中,共有C51種排法.
由分步乘法計數原理得共有A22•2A22•C51=40(種).
答案:40
點評:本題考查的是分步計數原理,分步計數原理(也稱乘法原理)完成一件事,需要分成n個步驟,做第1步有m1種不同的方法,做第2步有m2種不同的方法…做第n步有mn種不同的方法.那么完成這件事共有N=m1×m2×…×mn種不同的方法.