如果A={x|x<1},則有


  1. A.
    0⊆A
  2. B.
    {0}∈A
  3. C.
    Φ∈A
  4. D.
    {0}⊆A
D
分析:根據(jù)元素與集合之間應(yīng)用∈或∉連接,我們可以判斷A、C的真假;根據(jù)集合與集合之間應(yīng)用包含符號(hào)連接,我們可以判斷B,D之間的真假,進(jìn)而得到答案.
解答:∵A={x|x<1},
∴0∈A,故A錯(cuò)誤;
{0}?A,故B錯(cuò)誤;
∅?A,故C錯(cuò)誤;
{0}⊆A,故D正確;
故選D.
點(diǎn)評(píng):本題的考查的知識(shí)點(diǎn)是集合的包含關(guān)系的判斷及應(yīng)用,元素與集合之間的關(guān)系,其中熟練掌握元素與集合之間的關(guān)系及集合與集合之間的關(guān)系,是解答此類問題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
(1)若f(x)=cosx,x∈[0,π],試寫出f1(x),f2(x)的表達(dá)式;
(2)已知函數(shù)f(x)=x2,x∈[-1,4],試判斷f(x)是否為[-1,4]上的“k階收縮函數(shù)”,如果是,求出對(duì)應(yīng)的k;如果不是,請(qǐng)說明理由;
(3)已知b>0,函數(shù)f(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果A={x|x>-1},那么( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果A={x|x>-1},那么正確的結(jié)論是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果A={x|x<1},則有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
(1)已知函數(shù)f(x)=2sinx,x∈[0,
π
2
],試寫出f1(x),f2(x)的表達(dá)式,并判斷f(x)是否為[0,
π
2
]上的“k階收縮函數(shù)”,如果是,請(qǐng)求對(duì)應(yīng)的k的值;如果不是,請(qǐng)說明理由;
(2)已知b>0,函數(shù)g(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案