為改善行人過馬路難的問題,市政府決定在如圖所示的矩形區(qū)域ABCD(AB=60米,AD=104米)內修建一座過街天橋,天橋的高GM與HN均為米,,AE,EG,HF,F(xiàn)C的造價均為每米1萬元,GH的造價為每米2萬元,設MN與AB所成的角為α(α∈[0,]),天橋的總造價(由AE,EG,GH,HF,F(xiàn)C五段構成,GM與HN忽略不計)為W萬元.
(1)試用α表示GH的長;
(2)求W關于α的函數(shù)關系式;
(3)求W的最小值及相應的角α.

【答案】分析:(1)先確定MP的值,再在Rt△NMT中,即可用α表示GH的長;
(2)利用AE,EG,HF,F(xiàn)C的造價均為每米1萬元,GH的造價為每米2萬元,即可求出W關于α的函數(shù)關系式;
(3)求導函數(shù),確定函數(shù)的單調性,即可求出W的最小值及相應的角α.
解答:解:(1)由題意可知∠MNP=α,故有MP=60tanα,所以在Rt△NMT中,…(6分)
(2)=
=.…(11分)
(3)設(其中,

令f'(α)=0得1-2sinα=0,即,得
列表
α
f'(α)+-
f(α)單調遞增極大值單調遞減
所以當時有,此時有
答:排管的最小費用為萬元,相應的角.…(16分)
點評:本題考查函數(shù)模型的構建,考查導數(shù)知識的運用,考查函數(shù)的最值,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

為改善行人過馬路難的問題,市政府決定在如圖所示的矩形區(qū)域ABCD(AB=60米,AD=104米)內修建一座過街天橋,天橋的高GM與HN均為4
3
米,∠GEM=∠HFN=
π
6
,AE,EG,HF,F(xiàn)C的造價均為每米1萬元,GH的造價為每米2萬元,設MN與AB所成的角為α(α∈[0,
π
4
]),天橋的總造價(由AE,EG,GH,HF,F(xiàn)C五段構成,GM與HN忽略不計)為W萬元.
(1)試用α表示GH的長;
(2)求W關于α的函數(shù)關系式;
(3)求W的最小值及相應的角α.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省鹽城市高二(下)期末數(shù)學試卷(理科)(解析版) 題型:解答題

為改善行人過馬路難的問題,市政府決定在如圖所示的矩形區(qū)域ABCD(AB=60米,AD=104米)內修建一座過街天橋,天橋的高GM與HN均為米,,AE,EG,HF,F(xiàn)C的造價均為每米1萬元,GH的造價為每米2萬元,設MN與AB所成的角為α(α∈[0,]),天橋的總造價(由AE,EG,GH,HF,F(xiàn)C五段構成,GM與HN忽略不計)為W萬元.
(1)試用α表示GH的長;
(2)求W關于α的函數(shù)關系式;
(3)求W的最小值及相應的角α.

查看答案和解析>>

同步練習冊答案