(理)ABCD是直角梯形,∠ABC=∠BAD=90°,又SA⊥平面ABCD,SA=AB=BC=1,AD=,面SCD與面SAB所成二面角的正切值為   
【答案】分析:由SA⊥面ABCD,知面ABCD⊥面SAB,△SCD在面SAB的射影是△SAB,分別求出而△SAB的面積和△SCD的面積,由面積射影定理得cosφ=,由此即可求得結(jié)論.
解答:解:由SA⊥面ABCD,知面ABCD⊥面SAB,
∴△SCD在面SAB的射影是△SAB,
而△SAB的面積S1=×SA×AB=
設(shè)SC的中點是M,
∵SD=CD=,∴DM⊥SC,DM=
∴△SCD的面積S2=×SC×DM=
設(shè)平面SAB和平面SCD所成角為φ,
則由面積射影定理得cosφ==
∴sinφ=
∴tanφ=
故答案為:
點評:本題考查的知識點是二面角的平面角及求法,利用面積射影定理是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理)ABCD是直角梯形,∠ABC=∠BAD=90°,又SA⊥平面ABCD,SA=AB=BC=1,AD=
1
2
,面SCD與面SAB所成二面角的正切值為
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年新人教版高三上學(xué)期單元測試(6)數(shù)學(xué)試卷 題型:填空題

(理)ABCD是直角梯形,∠ABC=∠BAD=90°,又SA⊥平面ABCD,SA=AB=BC=1,

AD=,面SCD與面SAB所成二面角的正切值為                       。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(理)ABCD是直角梯形,∠ABC=∠BAD=90°,又SA⊥平面ABCD,SA=AB=BC=1,AD=
1
2
,面SCD與面SAB所成二面角的正切值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(理)ABCD是直角梯形,∠ABC=∠BAD=90°,又SA⊥平面ABCD,SA=AB=BC=1,AD=
1
2
,面SCD與面SAB所成二面角的正切值為______.

查看答案和解析>>

同步練習(xí)冊答案