【題目】現(xiàn)行的個稅法修正案規(guī)定:個稅免征額由原來的2000元提高到3500元,并給出了新的個人所得稅稅率表:

全月應(yīng)納稅所得額

稅率

不超過1500元的部分

3%

超過1500元至4500元的部分

10%

超過4500元至9000元的部分

20%

超過9000元至35000元的部分

25%

……

例如某人的月工資收入為5000元,那么他應(yīng)納個人所得稅為:(元).

(Ⅰ)若甲的月工資收入為6000元,求甲應(yīng)納的個人收的稅;

(Ⅱ)設(shè)乙的月工資收入為元,應(yīng)納個人所得稅為元,求關(guān)于的函數(shù);

(Ⅲ)若丙某月應(yīng)納的個人所得稅為1000元,給出丙的月工資收入.(結(jié)論不要求證明)

【答案】(1) (元).

(2) .

(3) 丙的月工資收入為11275元.

【解析】分析:(Ⅰ)根據(jù)題意,利用表格中的要求,即可計算甲的月工資收入為6000元,其應(yīng)納的個人所得稅;

(Ⅱ)根據(jù)題意,借助表格總的要求,分別計算收入在不同的范圍內(nèi)的應(yīng)用的函數(shù)解析式,最后利用分段函數(shù)表示應(yīng)納個人所得稅的函數(shù)關(guān)系式;

(Ⅲ)由(2)中的函數(shù)的解析式,即可得到丙的月工資收入.

詳解:(Ⅰ)解:甲的月工資收入為6000元,其應(yīng)納的個人所得稅為(元).

(Ⅱ)解:當時,乙應(yīng)納個人所得稅元.

時,乙應(yīng)納個人所得稅元.

時,乙應(yīng)納個人所得稅

元.

時,乙應(yīng)納個人所得稅

元.

所以

(Ⅲ)丙的月工資收入為11275元.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為了了解當下高二男生的身高狀況,某地區(qū)對高二年級男生的身高(單位: )進行了抽樣調(diào)查,得到的頻率分布直方圖如圖所示.已知身高在之間的男生人數(shù)比身高在之間的人數(shù)少1人.

(1)若身高在以內(nèi)的定義為身高正常,而該地區(qū)共有高二男生18000人,則該地區(qū)高二男生中身高正常的大約有多少人?

(2)從所抽取的樣本中身高在的男生中隨機再選出2人調(diào)查其平時體育鍛煉習慣對身高的影響,則所選出的2人中至少有一人身高大于185的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓C1與C2的中心在坐標原點O,長軸均為MN且在x軸上,短軸長分別為2m,2n(m>n),過原點且不與x軸重合的直線l與C1 , C2的四個交點按縱坐標從大到小依次為A,B,C,D,記 ,△BDM和△ABN的面積分別為S1和S2

(1)當直線l與y軸重合時,若S1=λS2 , 求λ的值;
(2)當λ變化時,是否存在與坐標軸不重合的直線l,使得S1=λS2?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分別是AC,AB上的點, ,O為BC的中點.將△ADE沿DE折起,得到如圖2所示的四棱椎A(chǔ)′﹣BCDE,其中A′O=

(1)證明:A′O⊥平面BCDE;
(2)求二面角A′﹣CD﹣B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線在點處的切線方程;

(Ⅱ)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;

(Ⅲ)設(shè)函數(shù),其中.證明:的圖象在圖象的下方.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】閱讀如圖所示的程序框圖,若輸入的k=10,則該算法的功能是(

A.計算數(shù)列{2n1}的前10項和
B.計算數(shù)列{2n1}的前9項和
C.計算數(shù)列{2n﹣1}的前10項和
D.計算數(shù)列{2n﹣1}的前9項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一正方體的表面展開圖.、、都是所在棱的中點.則在原正方體中:①異面;②平面;③平面平面;④與平面形成的線面角的正弦值是;⑤二面角的余弦值為.其中真命題的序號是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某醫(yī)學院讀書協(xié)會欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該協(xié)會分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如圖所示的頻率分布直方圖.該協(xié)會確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

(Ⅰ)已知選取的是1月至6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出就診人數(shù)關(guān)于晝夜溫差的線性回歸方程;

(Ⅱ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問(Ⅰ)中該協(xié)會所得線性回歸方程是否理想?

參考公式:回歸直線的方程

其中,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,對任意滿足,且,數(shù)列滿足,其前9項和為63.

(1)求數(shù)列的通項公式;

(2)令,數(shù)列的前項和為,若對任意正整數(shù),都有,求實數(shù)的取值范圍;

(3)將數(shù)列的項按照為奇數(shù)時,放在前面;當為偶數(shù)時,放在前面的要求進行交叉排列,得到一個新的數(shù)列:,求這個新數(shù)列的前項和

查看答案和解析>>

同步練習冊答案