讀如下兩段偽代碼,完成下面題目.

若Ⅰ,Ⅱ的輸出結(jié)果相同,則Ⅱ輸入的值為
 
考點:偽代碼
專題:算法和程序框圖
分析:根據(jù)題意,模擬偽代碼的運行過程,即可得出正確的結(jié)論.
解答: 解:根據(jù)題意,
Ⅰ中偽代碼運行后輸出的是x=3×2=6;
Ⅱ中運行后輸出的也是y=6,
∴x2+6=6,
∴x=0;
即輸入的是0.
故答案為:0.
點評:本題考查了算法語言的應(yīng)用問題,解題時應(yīng)模擬算法語言的運行過程,以便得出正確的結(jié)果,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={0,1,2,3,4,5,7},B={1,3,6,8,9},C={3,7,8},那么集合(A∩B)∪C是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:A={x|y=2x+3}、B={y|x+4y=21},則A∩B=( 。
A、RB、ϕ
C、{1,5}D、{(1,5)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,棱長為a,M、N分別是AB1、A1C1上的點,A1N=AM,
(1)求證:MN∥BB1C1C;
(2)求MN的長度最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點A(0,-3),動點P在x軸上移動,動點Q在y軸上,且∠APQ=
π
2
,點R在直線PQ上且滿足
PQ
=
1
2
QR

(1)當(dāng)點P在x軸上移動時,求動點R的軌跡C的方程;
(2)傾斜角為
π
4
的直線l0與軌跡C相切,求切線l0的方程;
(3)已知切線l0與y軸的交點為B,過點B的直線l與軌跡C交于M、N兩點,點D(0,1).若∠MDN為鈍角,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
1
x
+alnx,x∈R.
(Ⅰ)若a=1,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若對任意的x∈[1,e],都有
2
e
≤f(x)≤2e恒成立,求實數(shù)a的取值范圍.(注:e為自然對數(shù)的底數(shù).)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x的一元二次方程x2-2ax+b2=0.
(1)若a是從0、1、2、3四個數(shù)中任取的一個數(shù),b是從0、1、2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.
(2)若a是從區(qū)間[0,3]內(nèi)任取的一個數(shù),b是從區(qū)間[0,2]內(nèi)任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,P是C上的點,PF2⊥F1F2,∠PF1F2=60°,則C的離心率為( 。
A、
3
6
B、
3
-1
C、
3
2
D、2-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

邊長為2的正方形ABCD,其內(nèi)切圓與邊BC切于點E、F為內(nèi)切圓上任意一點,則
AE
AF
取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案