【題目】已知拋物線的焦點(diǎn)為,是拋物線上的兩個(gè)動(dòng)點(diǎn),且,過(guò),兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為.

(1)若直線,軸分別交于點(diǎn),,且的面積為,求的值;

(2)求的值.

【答案】(1)(2)

【解析】

1)利用導(dǎo)數(shù)求切線斜率,再根據(jù)切線方程得點(diǎn),坐標(biāo),最后根據(jù)三角形面積解得切點(diǎn)坐標(biāo),利用拋物線定義得結(jié)果,(2)先求P 點(diǎn)坐標(biāo),化簡(jiǎn),再聯(lián)立直線方程與拋物線方程,結(jié)合韋達(dá)定理代入化簡(jiǎn)即得的值.

(1)設(shè),,拋物線方程寫(xiě)成,,則以點(diǎn)為切點(diǎn)的拋物線的切線的方程為:,又,即,

,, ,故 ,∴,,從而.

(2)由(1)知:,即:,同理,

解得

因?yàn)?/span>,三點(diǎn)共線,易知直線斜率不存在時(shí)不成立,

所以方程可設(shè)為

聯(lián)立,整理得,可得,

所以,又,

所以,,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)將甲、乙、丙、丁四個(gè)人安排到座位號(hào)分別是的四個(gè)座位上,他們分別有以下要求,

甲:我不坐座位號(hào)為的座位;

乙:我不坐座位號(hào)為的座位;

丙:我的要求和乙一樣;

。喝绻也蛔惶(hào)為的座位,我就不坐座位號(hào)為的座位.

那么坐在座位號(hào)為的座位上的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,圓,直線,直線過(guò)點(diǎn),傾斜角為,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(1)寫(xiě)出直線與圓的交點(diǎn)極坐標(biāo)及直線的參數(shù)方程;

(2)設(shè)直線與圓交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了打好精準(zhǔn)扶貧攻堅(jiān)戰(zhàn)某村扶貧書(shū)記打算帶領(lǐng)該村農(nóng)民種植新品種蔬菜,可選擇的種植量有三種:大量種植,適量種植,少量種植.根據(jù)收集到的市場(chǎng)信息,得到該地區(qū)該品種蔬菜年銷量頻率分布直方圖如圖,然后,該扶貧書(shū)記同時(shí)調(diào)查了同類其他地區(qū)農(nóng)民以往在各種情況下的平均收入如表1(表中收入單位:萬(wàn)元):

1

銷量

種植量

大量

8

-4

適量

9

7

0

少量

4

4

2

但表格中有一格數(shù)據(jù)被墨跡污損,好在當(dāng)時(shí)調(diào)查的數(shù)據(jù)頻數(shù)分布表還在,其中大量種植的100戶農(nóng)民在市場(chǎng)銷量好的情況下收入情況如表2

收入(萬(wàn)元)

11

11.5

12

12.5

13

13.5

14

14.5

15

頻數(shù)(戶)

5

10

15

10

15

20

10

10

5

(Ⅰ)根據(jù)題中所給數(shù)據(jù),請(qǐng)估計(jì)在市場(chǎng)銷量好的情況下,大量種植的農(nóng)民每戶的預(yù)期收益.(用以往平均收入來(lái)估計(jì));

(Ⅱ)若該地區(qū)年銷量在10千噸以下表示銷量差,在10千噸至30千噸之間表示銷量中,在30千噸以上表示銷量好,試根據(jù)頻率分布直方圖計(jì)算銷量分別為好、中、差的概率(以頻率代替概率);

(Ⅲ)如果你是這位扶貧書(shū)記,請(qǐng)根據(jù)(Ⅰ)(Ⅱ),從農(nóng)民預(yù)期收益的角度分析,你應(yīng)該選擇哪一種種植量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不等式|2x-1|+|2x-2|x+3的解集是A

(Ⅰ)求集合A;

(Ⅱ)設(shè)x,yA,對(duì)任意aR,求證:xy||x+a|-|y+a||)<x2+y2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別為,焦距為6.

(1)求橢圓的方程.

(2)過(guò)橢圓左頂點(diǎn)的兩條斜率之積為的直線分別與橢圓交于點(diǎn).試問(wèn)直線是否過(guò)某定點(diǎn)?若過(guò),求出該點(diǎn)的坐標(biāo);若不過(guò),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)對(duì)任意的,成立,求實(shí)數(shù)的取值范圍;

(2)若,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正三棱柱中,的面積為,.點(diǎn)為線段的中點(diǎn).

(1)在線段上找一點(diǎn),使得平面平面,并證明;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,左頂點(diǎn)為,離心率為,點(diǎn)是橢圓上的動(dòng)點(diǎn),的面積的最大值為.

(1)求橢圓的方程;

(2)設(shè)經(jīng)過(guò)點(diǎn)的直線與橢圓相交于不同的兩點(diǎn),線段的中垂線為.若直線與直線相交于點(diǎn),與直線相交于點(diǎn),求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案