【題目】是指懸浮在空氣中的空氣動力學當量直徑小于或等于微米的顆粒物,也稱為可入肺顆粒物.根據(jù)現(xiàn)行國家標準,日均值在微克/立方米以下,空氣質(zhì)量為一級;在微克應立方米微克立方米之間,空氣質(zhì)量為二級:在微克/立方米以上,空氣質(zhì)量為超標.從某市年全年每天的監(jiān)測數(shù)據(jù)中隨機地抽取天的數(shù)據(jù)作為樣本,監(jiān)測值頻數(shù)如下表:
日均值 (微克/立方米) | ||||||
頻數(shù)(天) |
(1)從這天的日均值監(jiān)測數(shù)據(jù)中,隨機抽出天,求恰有天空氣質(zhì)量達到一級的概率;
(2)從這天的數(shù)據(jù)中任取天數(shù)據(jù),記表示抽到監(jiān)測數(shù)據(jù)超標的天數(shù),求的分布列.
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分
沙漏是古代的一種計時裝置,它由兩個形狀完全相同的容器和一個狹窄的連接管道組成,開始時細沙全部在上部容器中,細沙通過連接管道全部流到下部容器所需要的時間稱為該沙漏的一個沙時。如圖,某沙漏由上下兩個圓錐組成,圓錐的底面直徑和高均為8cm,細沙全部在上部時,其高度為圓錐高度的(細管長度忽略不計).
(1)如果該沙漏每秒鐘漏下0.02cm3的沙,則該沙漏的一個沙時為多少秒(精確到1秒)?
(2)細沙全部漏入下部后,恰好堆成個一蓋住沙漏底部的圓錐形沙堆,求此錐形沙堆的高度(精確到0.1cm).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,橢圓:過點,,為橢圓的左、右焦點,離心率為,圓的直徑為.
(1)求橢圓及圓的方程;
(2)設直線與圓相切于第一象限內(nèi)的點.
①若直線與橢圓有且只有一個公共點,求點的坐標;
②若直線與橢圓交于,兩點,且的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點是曲線:上的動點,延長(是坐標原點)到,使得,點的軌跡為曲線.
(1)求曲線的方程;
(2)若點,分別是曲線的左、右焦點,求的取值范圍;
(3)過點且不垂直軸的直線與曲線交于,兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點為,,長軸端點為,,為橢圓中心,,斜率為的直線與橢圓交于不同的兩點,這兩點在軸上的射影恰好是橢圓的兩個焦點.
(1)求橢圓的方程;
(2)若拋物線上存在兩個點,,橢圓上存在兩個點,,滿足,,三點共線,,,三點共線,且,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體中,平面平面.四邊形為正方形,四邊形為梯形,且,是邊長為1的等邊三角形,M為線段中點,.
(1)求證:;
(2)求直線與平面所成角的正弦值;
(3)線段上是否存在點N,使得直線平面?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的圓心為,圓內(nèi)一條過點的動弦(與軸不重合),過點作的平行線交于點.
(1)求出點的軌跡方程;
(2)若過點的直線交的軌跡方程于不同兩點,,為坐標原點,且,點為橢圓上一點,求點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,右焦點為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)如圖,過定點的直線交橢圓于兩點,連接并延長交于,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com