【題目】已知函數(shù).

(1)當時,求曲線在點處的切線方程;

(2)求函數(shù)f(x)的極值.

【答案】(1) xy-2=0;(2) a0時,函數(shù)f(x)無極值;當a>0時,函數(shù)f(x)xa處取得極小值aaln a無極大

【解析】

解:函數(shù)f(x)的定義域為(0,+∞),f′(x)1.

(1)a2時,f(x)x2ln x

f′(x)1(x>0),

因而f(1)1,f′(1)=-1,

所以曲線yf(x)在點A(1f(1))處的切線方程為y1=-(x1),即xy20.

(2)f′(x)1,x>0知:

a≤0時,f′(x)>0,函數(shù)f(x)(0,+∞)上的增函數(shù),函數(shù)f(x)無極值;

a>0時,由f′(x)0,解得xa,

又當x∈(0,a)時,f′(x)<0

x∈(a,+∞)時,f′(x)>0,

從而函數(shù)f(x)xa處取得極小值,且極小值為f(a)aaln a,無極大值.

綜上,當a≤0時,函數(shù)f(x)無極值;

a>0時,函數(shù)f(x)xa處取得極小值aaln a,無極大值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】PM2.5(單位:μg/m3)表示每立方米空氣中可入肺顆粒物的含量,這個值越高,空氣污染越嚴重.PM2.5的濃度與空氣質(zhì)量類別的關(guān)系如下表所示:

從甲城市2016年9月份的30天中隨機抽取15天,這15天的PM2.5的日均濃度指數(shù)數(shù)據(jù)如莖葉圖所示.

(1)試估計甲城市在2016年9月份的30天中,空氣質(zhì)量類別為優(yōu)或良的天數(shù);

(2)從甲城市的這15個監(jiān)測數(shù)據(jù)中任取2個,設X是空氣質(zhì)量類別為優(yōu)或良的天數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學生對其親屬30人的飲食習慣進行了一次調(diào)查,并用下圖所示的莖葉圖表示30人的飲食指數(shù).(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主)

(1)根據(jù)以上數(shù)據(jù)完成下面的2×2列聯(lián)表:

主食 蔬菜

主食 肉類

總計

50歲以下

50歲以上

總計

(2)能否在犯錯誤的概率不超過0.010的前提下認為“其親屬的飲食習慣與年齡有關(guān)”?并寫出簡要分析.

附參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知圓的圓心坐標為,半徑為,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線l的參數(shù)方程為:為參數(shù)).

(1)求圓和直線l的極坐標方程;

(2)點的極坐標為,直線l與圓相交于A,B,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an},其前n項和為Sn
(1)若{an}是公差為d(d>0)的等差數(shù)列,且{ }也為公差為d的等差數(shù)列,求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}對任意m,n∈N* , 且m≠n,都有 =am+an+ ,求證:數(shù)列{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+ )(ω>0)的最小正周期為π,則該函數(shù)的圖象(
A.關(guān)于直線x= 對稱
B.關(guān)于點( ,0)對稱
C.關(guān)于直線x=﹣ 對稱
D.關(guān)于點( ,0)對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,A,B,C的對邊分別是a,b,c,3sin2C+8sin2A=11sinAsinC,且c<2a.
(1)求證:△ABC為等腰三角形
(2)若△ABC的面積為8 .且sinB= ,求BC邊上的中線長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸入,則輸出的的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,武漢市出現(xiàn)了非常嚴重的霧霾天氣,而燃放煙花爆竹會加重霧霾,是否應該全面禁放煙花爆竹已成為人們議論的一個話題.武漢市環(huán)保部門就是否贊成禁放煙花爆竹,對400位老年人和中青年市民進行了隨機問卷調(diào)查,結(jié)果如下表:

贊成禁放

不贊成禁放

合計

老年人

60

140

200

中青年人

80

120

200

合計

140

260

400

附:K2=

P(k2>k0

0.050

0.025

0.010

k0

3.841

5.024

6.635


(1)有多大的把握認為“是否贊成禁放煙花爆竹”與“年齡結(jié)構(gòu)”有關(guān)?請說明理由;
(2)從上述不贊成禁放煙花爆竹的市民中按年齡結(jié)構(gòu)分層抽樣出13人,再從這13人中隨機的挑選2人,了解他們春節(jié)期間在煙花爆竹上消費的情況.假設一位老年人花費500元,一位中青年人花費1000元,用X表示它們在煙花爆竹上消費的總費用,求X的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案