不等式x2-ax+1≥0解集為R,則a的取值范圍為 (  )
分析:利用一元二次不等式的解集與判別式△的關系即可得出.
解答:解:由題意可得△=a2-4≤0,解得-2≤a≤2.
故選A.
點評:熟練掌握一元二次不等式的解集與判別式△的關系是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設命題p:函數(shù)y=ax在R上單調遞增,命題q:不等式x2-ax+1>0對于?x∈R恒成立,若“p∧q”為假,“p∨q”為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:不等式x2+ax+1≤0有非空解集,命題q:函數(shù)f(x)=(a-1)x+2是增函數(shù).若“pVq”為真,“p∧q”為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式x2+ax+1≥0對于一切x∈(0,
1
2
)成立,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的不等式x2-ax+1≤0有解,求關于x的不等式ax+4>7-2x的解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:關于x的不等式x2-ax+1≥0對任意x∈R恒成立;命題q:函數(shù)f(x)=
13
x3-x2-ax+2
在x∈[-1,1]上是增函數(shù).若“p∨q”為真命題,“p∧q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案