選修4-5:不等式選講
若關(guān)于x的方程 x2-4x+|a|+|a-3|=0有實(shí)根
(1)求實(shí)數(shù)a的取值集合A
(2)若存在a∈A,使得不等式t2-2a|t|+12<0成立,求實(shí)數(shù)t的取值范圍.

解:(1)∵關(guān)于x的方程 x2-4x+|a|+|a-3|=0有實(shí)根,
∴△=16-4(|a|+|a-3|)≥0,
,
∴A=[];
(2)令f(a)=t2-2a|t|+12,
∵存在a∈A,使得不等式t2-2a|t|+12<0成立,
∴f(a)min<0即可,即f()=t2-7|t|+12<0,
∴3<|t|<4,
∴-4<t<-3或3<t<4.
分析:(1)根據(jù)關(guān)于x的方程 x2-4x+|a|+|a-3|=0有實(shí)根,可得△≥0,解不等式即可求得結(jié)果;
(2)存在a∈A,使得不等式t2-2a|t|+12<0成立,構(gòu)造函數(shù)f(a)=t2-2a|t|+12,轉(zhuǎn)化為函數(shù)的最小值小于零即可,解此不等式即可求得實(shí)數(shù)t的取值范圍.
點(diǎn)評:本題考查二次函數(shù)的根的問題,別更主元,構(gòu)造函數(shù)f(a)=t2-2a|t|+12,轉(zhuǎn)化為函數(shù)的最小值是解題的關(guān)鍵和難點(diǎn),考查運(yùn)算能力和轉(zhuǎn)化能力,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
設(shè)x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【選修4-5:不等式選講】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講:
設(shè)正有理數(shù)x是
2
的一個近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求證:y<
2
;
(Ⅱ)比較y與x哪一個更接近于
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•鹽城模擬)(選修4-5:不等式選講)
已知a,b,c為正數(shù),且a2+a2+c2=14,試求a+2b+3c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•烏魯木齊一模)選修4-5:不等式選講
設(shè)函數(shù),f(x)=|x-1|+|x-2|.
(I)求證f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案