過點(diǎn)C(0,1)的橢圓的離心率為,橢圓與x軸交于兩點(diǎn),過點(diǎn)C的直線與橢圓交于另一點(diǎn)D,并與x軸交于點(diǎn)P,直線AC與直線BD交于點(diǎn)Q.

(I)當(dāng)直線過橢圓右焦點(diǎn)時,求線段CD的長;

(II)當(dāng)點(diǎn)P異于點(diǎn)B時,求證:為定值.

 

【答案】

(I)    (II)=4

【解析】

試題分析:(Ⅰ)由已知得,解得,所以橢圓方程為

橢圓的右焦點(diǎn)為,此時直線的方程為 ,代入橢圓方程得,解得,代入直線的方程得 ,所以      

,故.     

(Ⅱ)當(dāng)直線軸垂直時與題意不符.

設(shè)直線的方程為.代入橢圓方程得

解得,代入直線的方程得

所以D點(diǎn)的坐標(biāo)為

又直線AC的方程為,又直線BD的方程為,聯(lián)立得因此,又.所以.故為定值.  

考點(diǎn):直線與圓錐曲線的綜合問題 平面向量數(shù)量積的運(yùn)算 橢圓的簡單性質(zhì).

點(diǎn)評:本題主要考察了由橢圓的性質(zhì)求解橢圓方程,直線與曲線相交的弦長公式的應(yīng)用及向量的數(shù)量積的坐標(biāo)表示的應(yīng)用,屬于圓錐曲線問題的綜合應(yīng)用

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•懷化三模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點(diǎn)(
3
,
3
2
)
,離心率e=
1
2
,若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
x0
a
,
y0
b
)
稱為點(diǎn)M的一個“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系O-xyz中,方程
x2
a2
+
y2
b2
+
z2
c2
=1(a>b>c>0)
表示中心在原點(diǎn)、其軸與坐標(biāo)軸重合的某橢球面的標(biāo)準(zhǔn)方程.2a,2b,2c分別叫做橢球面的長軸長,中軸長,短軸長.類比在平面直角坐標(biāo)系中橢圓標(biāo)準(zhǔn)方程的求法,在空間直角坐標(biāo)系O-xyz中,若橢球面的中心在原點(diǎn)、其軸與坐標(biāo)軸重合,平面xOy截橢球面所得橢圓的方程為
x2
9
+
y2
16
=1
,且過點(diǎn)M(1,2,
23
)
,則此橢球面的標(biāo)準(zhǔn)方程為
x2
9
+
y2
16
+
z2
36
=1
x2
9
+
y2
16
+
z2
36
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C的方程
x2
a2
+
y2
b2
=1(a>b>0)
,斜率為1的直L與橢C交于A(x1,y1)B(x2,y2)兩點(diǎn).
(Ⅰ)若橢圓的離心率e=
3
2
,直線l過點(diǎn)M(b,0),且
OA
OB
=-
12
5
,求橢圓C的方程;
(Ⅱ)直線l過橢圓的右焦點(diǎn)F,設(shè)向量
OP
=λ(
OA
+
OB
)(λ>0),若點(diǎn)P在橢C上,λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣二模)已知橢C:
x2
a2
+
y2
b2
=1
(a>b>0),以橢圓短軸的一個頂點(diǎn)B與兩個焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形周長是4+2
3
,且∠BF1F2=
π
6

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過點(diǎn)Q(1,
1
2
)引曲線C的弦AB恰好被點(diǎn)Q平分,求弦AB所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•懷化二模)如圖展示了一個由區(qū)間(0,k)(其中k為一正實(shí)數(shù))到實(shí)數(shù)集R上的映射過程:區(qū)間(0,k)中的實(shí)數(shù)m對應(yīng)線段AB上的點(diǎn)M,如圖1;將線段AB圍成一個離心率為
3
2
的橢圓,使兩端點(diǎn)A、B恰好重合于橢圓的一個短軸端點(diǎn),如圖2;再將這個橢圓放在平面直角坐標(biāo)系中,使其中心在坐標(biāo)原點(diǎn),長軸在x軸上,已知此時點(diǎn)A的坐標(biāo)為(0,1),如圖3,在圖形變化過程中,圖1中線段AM的長度對應(yīng)于圖3中的橢圓弧ADM的長度.圖3中直線AM與直線y=-2交于點(diǎn)N(n,-2),則與實(shí)數(shù)m對應(yīng)的實(shí)數(shù)就是n,記作f(m)=n,

現(xiàn)給出下列5個命題①f(
k
2
)=6
;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關(guān)于點(diǎn)(
k
2
,0)
對稱;⑤函數(shù)f(m)=3
3
時AM過橢圓的右焦點(diǎn).其中所有的真命題是( 。

查看答案和解析>>

同步練習(xí)冊答案