精英家教網 > 高中數學 > 題目詳情

【題目】已知拋物線C=2pxp>0)的準線方程為x=-,F為拋物線的焦點

I)求拋物線C的方程;

II)若P是拋物線C上一點,點A的坐標為(,2,的最小值;

III)若過點F且斜率為1的直線與拋物線C交于MN兩點,求線段MN的中點坐標。

【答案】II4III)線段MN中點的坐標為(

【解析】

I)由準線方程求得,可得拋物線標準方程.

II)把轉化為到準線的距離,可得三點共線時得所求最小值.

III)寫出直線方程,代入拋物線方程后用韋達定理可得中點坐標.

I)∵準線方程x=-,=1,

∴拋物線C的方程為

II)過點P作準線的垂線,垂直為B,則=

要使+的最小,則P,A,B三點共線

此時+=+=4·

III)直線MN的方程為y=x-·

M),N),把y=x-代入拋物線方程,-3x+=0

∵△=9-4×1×80

+=3,=

線段MN中點的橫坐標為,縱坐標為

線段MN中點的坐標為(

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某農科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了日至日的每天晝夜溫差與實驗室每天每顆種子中的發(fā)芽數,得到如下資料:

日期

溫差

發(fā)芽數(顆)

該農科所確定的研究方案是:先從這五組數據中選取組,用剩下的組數據求線性回歸方程,再對被選取的組數據進行檢驗.

1)求選取的組數據恰好是不相鄰天數據的概率;

2)若選取的是日與日的兩組數據,請根據日至日的數據,求出關于的線性回歸方程

3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解甲、乙兩種離子在小鼠體內的殘留程度,進行如下試驗:將200只小鼠隨機分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經過一段時間后用某種科學方法測算出殘留在小鼠體內離子的百分比.根據試驗數據分別得到如下直方圖:

為事件:“乙離子殘留在體內的百分比不低于”,根據直方圖得到的估計值為.

(1)求乙離子殘留百分比直方圖中的值;

(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數據用該組區(qū)間的中點值為代表).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線的參數方程為為參數),曲線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,且曲線的極坐標方程為.

(1)若直線的斜率為,判斷直線與曲線的位置關系;

(2)求交點的極坐標(,).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知有限集. 如果中元素滿足,就稱復活集,給出下列結論:

①集合復活集;

②若,且復活集,則

③若,則不可能是復活集;

④若,則復活集有且只有一個,且.

其中正確的結論是____________.(填上你認為所有正確的結論序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)求證上遞增;

2)若上的值域是,求實數a的取值范圍;

3)當上恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 .

(1)若,求函數的單調區(qū)間;

(2)若,則當時,函數的圖象是否總在直線上方?請寫出判斷過程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,曲線的參數方程為為參數),在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為.

(1)求曲線和直線在該直角坐標系下的普通方程;

(2)動點在曲線上,動點在直線上,定點的坐標為,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線)與雙曲線,)有相同的焦點,點是兩條曲線的一個交點,且軸,則該雙曲線經過一、三象限的漸近線的傾斜角所在的區(qū)間是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案