已知直線L:(2m+1)x+(m+1)y-7m-4=0,圓C:x2+y2-2x-4y-20=0.
(1)求證:直線L過定點(diǎn);
(2)求直線L被圓C截得的線段最小長度,并求此時(shí)對(duì)應(yīng)的m的值.
【答案】分析:(1)直線L:(2m+1)x+(m+1)y-7m-4=0,即 m(2x+y-7)+(x+y-4)=0,顯然過直線2x+y-7=0 及直線x+y-4=0的交點(diǎn)A,由 解得交點(diǎn)A的坐標(biāo).
(2)把 圓C的方程化為標(biāo)準(zhǔn)形式,求出圓心C的坐標(biāo)和半徑,要使直線L被圓C截得的線段長度最小,需心C到直線L的距離d最大,d的最大為CA線段的長度.此時(shí),CA和直線L垂直,
斜率之積等于-1,解方程求得m的值.
解答:解:(1)直線L:(2m+1)x+(m+1)y-7m-4=0,即 m(2x+y-7)+(x+y-4)=0,顯然過直線2x+y-7=0 及直線x+y-4=0的交點(diǎn)A.
 解得交點(diǎn)A的坐標(biāo)為(3,1),
故直線L:(2m+1)x+(m+1)y-7m-4=0經(jīng)過定點(diǎn)A(3,1).
(2)圓C:x2+y2-2x-4y-20=0 即 (x-1)2+(y-2)2=25,表示以C(1,2)為圓心,以5為半徑的圓.
設(shè)圓心C到直線L的距離為d,要使直線L被圓C截得的線段長度最小,需d最大.由題意可知,d的最大為CA線段的長度.
由兩點(diǎn)間的距離公式可得 CA==
此時(shí),CA和直線L垂直,斜率之積等于-1,
•()=-1,解得 m=-
點(diǎn)評(píng):本題主要考查直線過定點(diǎn)問題,直線和圓的位置關(guān)系的應(yīng)用,判斷圓心C到直線L的距離d的最大為CA線段的長度,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:(2m+1)x+(m+1)y=7m+4,圓C:(x-1)2+(y-2)2=25.
(1)判斷直線l和圓C的位置關(guān)系;
(2)若直線l和圓C相交,求相交弦長最小時(shí)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線L:(2m+1)x+(m+1)y-7m-4=0,圓C:x2+y2-2x-4y-20=0.
(1)求證:直線L過定點(diǎn);
(2)求直線L被圓C截得的線段最小長度,并求此時(shí)對(duì)應(yīng)的m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年重慶一中高二(上)10月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知直線l:(2m+1)x+(m+1)y=7m+4,圓C:(x-1)2+(y-2)2=25.
(1)判斷直線l和圓C的位置關(guān)系;
(2)若直線l和圓C相交,求相交弦長最小時(shí)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省安陽市湯陰一中高二(上)月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知直線L:(2m+1)x+(m+1)y-7m-4=0,圓C:x2+y2-2x-4y-20=0.
(1)求證:直線L過定點(diǎn);
(2)求直線L被圓C截得的線段最小長度,并求此時(shí)對(duì)應(yīng)的m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案