已知函數(shù)y=xlnx+1.
(1)求這個(gè)函數(shù)的導(dǎo)數(shù);
(2)求這個(gè)函數(shù)的圖象在點(diǎn)x=1處的切線方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在處取得極小值.
(1)若函數(shù)的極小值是,求;
(2)若函數(shù)的極小值不小于,問:是否存在實(shí)數(shù),使得函數(shù)在上單調(diào)遞減?若存在,求出的范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x2+xsinx+cosx.
(1)若曲線y=f(x)在點(diǎn)(a,f(a))處與直線y=b相切,求a與b的值;
(2)若曲線y=f(x)與直線y=b有兩個(gè)不同交點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=aln(2x+1)+bx+1.
(1)若函數(shù)y=f(x)在x=1處取得極值,且曲線y=f(x)在點(diǎn)(0,f(0))處的切線與直線2x+y-3=0平行,求a的值;
(2)若b=,試討論函數(shù)y=f(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax2-(2a+1)x+2ln x,a∈R.
(1)若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2)求f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=-x3+x2-2x(a∈R).
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求實(shí)數(shù)a的取值范圍;
(3)若過點(diǎn)可作函數(shù)y=f(x)圖象的三條不同切線,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax3-x2+cx+d(a,c,d∈R)滿足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求a,c,d的值;
(2)若h(x)=x2-bx+-,解不等式f′(x)+h(x)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知f(x)=ex-ax-1.
(1)求f(x)的單調(diào)增區(qū)間;
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)求的單調(diào)區(qū)間;
(2)設(shè)函數(shù),若當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com