【題目】正方體的棱長為2,,,分別是,,,的中點(diǎn),則過且與平行的平面截正方體所得截面的面積為____,和該截面所成角的正弦值為______

【答案】

【解析】

(1)CD的總點(diǎn)QBC的中點(diǎn)P,根據(jù)題意易證MN//平面EFQP,故平面EFQP就是過且與平行的平面截正方體所得截面,求得S即可;

(2) 連接ACPQ于點(diǎn)R,易證 CR垂直平面EFQP,所以為直線和平面EFQP所成角然后直接求得的正弦值即可.

(1)由題,取CD的總點(diǎn)Q,BC的中點(diǎn)P,連接ME、NQ,在正方體中易知,MENQ是平行且相等的,所以MN//EQ,即MN//平面EFQP,故平面EFQP就是過且與平行的平面截正方體所得截面,PQ=

所以面積

(2)連接ACPQ于點(diǎn)R,再連接CE

易知CR垂直平面EFQP,所以為直線和平面EFQP所成角

,

所以

故答案為(1). (2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對某校學(xué)生做了一個(gè)是否同意生“二孩”抽樣調(diào)查,該調(diào)查機(jī)構(gòu)從該校隨機(jī)抽查了100名不同性別的學(xué)生,調(diào)查統(tǒng)計(jì)他們是同意父母生“二孩”還是反對父母生“二孩”,現(xiàn)已得知100人中同意父母生“二孩”占60%,統(tǒng)計(jì)情況如下表:

同意

不同意

合計(jì)

男生

a

5

女生

40

d

合計(jì)

100

(1)求 a,d 的值,根據(jù)以上數(shù)據(jù),能否有97.5%的把握認(rèn)為是否同意父母生“二孩”與性別有關(guān)?請說明理由;

(2)將上述調(diào)查所得的頻率視為概率,現(xiàn)在從所有學(xué)生中,采用隨機(jī)抽樣的方法抽取4 位學(xué)生進(jìn)行長期跟蹤調(diào)查,記被抽取的4位學(xué)生中持“同意”態(tài)度的人數(shù)為 X,求 X 的分布列及數(shù)學(xué)期望.

附:

0.15

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一束光線發(fā)出,射到軸上,被軸反射到圓上.(1)求反射線通過圓心時(shí),光線的方程;(2)求在軸上,反射點(diǎn)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下邊的折線圖給出的是甲、乙兩只股票在某年中每月的收盤價(jià)格,已知股票甲的極差是6.88元,標(biāo)準(zhǔn)差為2.04元;股票乙的極差為27.47元,標(biāo)準(zhǔn)差為9.63元,根據(jù)這兩只股票在這一年中的波動(dòng)程度,給出下列結(jié)論:①股票甲在這一年中波動(dòng)相對較小,表現(xiàn)的更加穩(wěn)定;②購買股票乙風(fēng)險(xiǎn)高但可能獲得高回報(bào);③股票甲的走勢相對平穩(wěn),股票乙的股價(jià)波動(dòng)較大;④兩只般票在全年都處于上升趨勢.其中正確結(jié)論的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201911月,第2屆中國國際進(jìn)口博覽會在中國上海召開,盛況空前,吸引了全球2800多家企業(yè)來參加.為評估企業(yè)的競爭力和長遠(yuǎn)合作能力,需要調(diào)查企業(yè)所在國家的經(jīng)濟(jì)狀況.某機(jī)構(gòu)抽取了50個(gè)國家,按照它們2017年的GDP總量,將收集的數(shù)據(jù)分成,, (單位:億美元)五組,做出下圖的頻率分布直方圖:

1)試根據(jù)頻率分布直方圖估計(jì)這些國家的平均GDP(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表).

2)研究人員發(fā)現(xiàn)所抽取的50個(gè)國家中,有些很早就與中國建交開展合作,有些近期才開始與中國合作,將兩類國家分為合作過未合作過”.請根據(jù)頻率分布直方圖完成上表,并說明是否有95﹪的把握說明這些國家的GDP超過4000億美元與中國合作有關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)若,討論函數(shù)的單調(diào)性;

2)若,在定義域內(nèi)存在,使得,求證:

3)記的反函數(shù),當(dāng)時(shí),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4 坐標(biāo)系與參數(shù)方程選講

在直角坐標(biāo)系中,直線的參數(shù)方程為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線極坐標(biāo)方程為.

(1)求直線的普通方程以及曲線的參數(shù)方程;

(2)當(dāng)時(shí),為曲線上動(dòng)點(diǎn),求點(diǎn)到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)某種產(chǎn)品的年固定成本為200萬元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時(shí),(萬元).當(dāng)年產(chǎn)量不小于80千件時(shí),(萬元).每件商品售價(jià)為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.

1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

2)當(dāng)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,底面四邊形ABCD是菱形,對角線ACBD交于點(diǎn)O,

求證:平面平面PBD

,,E為線段PA的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案