【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對(duì)40名小學(xué)六年級(jí)學(xué)生進(jìn)行了問(wèn)卷調(diào)查,并得到如下列聯(lián)表.平均每天喝以上為常喝,體重超過(guò)肥胖”.已知在全部40人中隨機(jī)抽取1人,抽到肥胖學(xué)生的概率為.

常喝

不常喝

合計(jì)

肥胖

3

不肥胖

5

合計(jì)

40

1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

2)是否有的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?請(qǐng)說(shuō)明你的理由.

參考公式:

①卡方統(tǒng)計(jì)量,其中為樣本容量;

②獨(dú)立性檢驗(yàn)中的臨界值參考表:

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)列聯(lián)表見(jiàn)解析;(2)有的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān).

【解析】

1)由抽到肥胖學(xué)生的概率為可知肥胖的學(xué)生有10,進(jìn)而補(bǔ)全列聯(lián)表即可;

2)利用公式求得的值,7.879比較即可判斷

1)設(shè)肥胖學(xué)生共名,則,解得,

∴肥胖學(xué)生共有10,

則列聯(lián)表如下:

常喝

不常喝

合計(jì)

肥胖

7

3

10

不肥胖

5

25

30

合計(jì)

12

28

40

2)由已知數(shù)據(jù)可求得,,

因此,有的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一般來(lái)說(shuō),一個(gè)班級(jí)的學(xué)生學(xué)號(hào)是從1 開(kāi)始的連續(xù)正整數(shù),在一次課上,老師隨機(jī)叫起班上8名學(xué)生,記錄下他們的學(xué)號(hào)是:3、21、17、19、36、8、32、24,則該班學(xué)生總數(shù)最可能為( )

A. 39人B. 49人C. 59人D. 超過(guò)59人

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市從現(xiàn)有甲、乙兩種酸奶的日銷(xiāo)售量(單位:箱)的1200個(gè)數(shù)據(jù)(數(shù)據(jù)均在區(qū)間內(nèi))中,按照的比例進(jìn)行分層抽樣,統(tǒng)計(jì)結(jié)果按,,,,分組,整理如下圖:

1)求頻率分布直方圖(圖乙)中的值,并估計(jì)1200個(gè)日銷(xiāo)售量中,數(shù)據(jù)在區(qū)間中的個(gè)數(shù).

2)從日銷(xiāo)售量在的甲種酸奶的數(shù)據(jù)樣本中抽取3個(gè),記在內(nèi)的數(shù)據(jù)個(gè)數(shù)為,求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐PABC中,PAAB,PABC,ABBC,PAABBC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).

(1)求證:PABD;

(2)求證:平面BDE平面PAC;

(3)當(dāng)PA平面BDE時(shí),求三棱錐EBCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列,均為遞增數(shù)列,的前項(xiàng)和為,的前項(xiàng)和為.且滿(mǎn)足,則下列說(shuō)法正確的有( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)原點(diǎn)的動(dòng)直線與圓:相交于不同的兩點(diǎn).

1)求圓的圓心坐標(biāo);

2)求線段的中點(diǎn)的軌跡的方程;

3)是否存在實(shí)數(shù),使得直線:與曲線只有一個(gè)交點(diǎn)?若存在,求出的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四色猜想是世界三大數(shù)學(xué)猜想之一,1976年數(shù)學(xué)家阿佩爾與哈肯證明,稱(chēng)為四色定理.其內(nèi)容是:任意一張平面地圖只用四種顏色就能使具有共同邊界的國(guó)家涂上不同的顏色.”用數(shù)學(xué)語(yǔ)言表示為將平面任意地細(xì)分為不相重疊的區(qū)域,每一個(gè)區(qū)域總可以用1,2,3,4四個(gè)數(shù)字之一標(biāo)記,而不會(huì)使相鄰的兩個(gè)區(qū)域得到相同的數(shù)字.”如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線圍城的各區(qū)域上分別標(biāo)有數(shù)字12,3,4的四色地圖符合四色定理,區(qū)域和區(qū)域標(biāo)記的數(shù)字丟失.若在該四色地圖上隨機(jī)取一點(diǎn),則恰好取在標(biāo)記為1的區(qū)域的概率所有可能值中,最大的是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)同時(shí)在處取得極小值,則稱(chēng)為一對(duì)“函數(shù)”.

(1)試判斷是否是一對(duì)“函數(shù)”;

(2)若是一對(duì)“函數(shù)”.

①求的值;

②當(dāng)時(shí),若對(duì)于任意,恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為,且滿(mǎn)足,數(shù)列中,,對(duì)任意正整數(shù).

1)求數(shù)列的通項(xiàng)公式;

2)是否存在實(shí)數(shù),使得數(shù)列是等比數(shù)列?若存在,請(qǐng)求出實(shí)數(shù)及公比q的值,若不存在,請(qǐng)說(shuō)明理由;

3)求數(shù)列n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案