精英家教網 > 高中數學 > 題目詳情

(其中)所表示的圓錐曲線(橢圓、雙曲線、拋物線)方程中任取一個,則此方程是焦點在軸上的雙曲線方程的概率為(  )

A.              B.               C.               D.

 

【答案】

B

【解析】

試題分析:由于m和n的所有可能取值共有3×3=9個,其中有兩種不符合題意,故共有7種,可一一列舉,從中數出能使方程是焦點在x軸上的雙曲線的選法,即m和n都為正的選法數,最后由古典概型的概率計算公式即可的其概率.

設(m,n)表示m,n的取值組合,則取值的所有情況有(-1,-1),(2,-1),(2,2),(2,3),(3,-1),(3,2),(3,3)共7個,(注意(-1,2),(-1,3)不合題意)其中能使方程是焦點在x軸上的雙曲線的有:(2,2),(2,3),(3,2),(3,3)共4個, ∴此方程是焦點在x軸上的雙曲線方程的概率為,選B.

考點:古典概型,雙曲線的方程

點評:本題考查了古典概型概率的求法,橢圓、雙曲線、拋物線的標準方程,列舉法計數的技巧,準確計數是解決本題的關鍵。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

古代印度婆羅門教寺廟內的僧侶們曾經玩過一種被稱為“河內寶塔問題”的游戲,其玩法如下:如圖,設有n(n∈N*)個圓盤依其半徑大小,大的在下,小的在上套在A柱上,現要將套在A柱上的盤換到C柱上,要求每次只能搬動一個,而且任何時候不允許將大盤套在小盤上面,假定有三根柱子A、B、C可供使用.現用an表示將n個圓盤全部從A柱上移到C柱上所至少需要移動的次數,回答下列問題:
(1)寫出a1,a2,a3,并求出an
(2)記bn=an+1,求和Sn=
1≤i≤j≤n
bibj
(i,j∈N*);(其中
1≤i≤j≤n
bibj
表示所有的積bibj(1≤i≤j≤n)的和)
證明:
1
7
S1
S2
+
S1S3
S2S4
+…+
S1S3S2n-1
S2S4S2n
4
21
(n∈N*).

查看答案和解析>>

科目:高中數學 來源: 題型:

古代印度婆羅門教寺廟內的僧侶們曾經玩過一種被稱為“河內寶塔問題”的游戲,其玩法如下:如圖,設有n(n∈N*)個圓盤依其半徑大小,大的在下,小的在上套在A柱上,現要將套在A柱上的盤換到C柱上,要求每次只能搬動一個,而且任何時候不允許將大盤套在小盤上面,假定有三根柱子A,B,C可供使用.

現用an表示將n個圓盤全部從A柱上移到C柱上所至少需要移動的次數,回答下列問題:
(1)寫出a1,a2,a3,并求出an
(2)記bn=an+1,求和Sn=
 
1≤i≤j≤n
bibj(i,j∈N*);
(其中
 
1≤i≤j≤n
bibj
表示所有的積bibj(1≤i≤j≤n)的和)
(3)證明:
S1
S2
+
S2
S3
+…+
Sn
Sn+1
n
4
-
3
16
+
3
16
1
2n
(n∈N*)

查看答案和解析>>

科目:高中數學 來源: 題型:

古代印度婆羅門教寺廟內的僧侶們曾經玩過一種被稱為“河內寶塔問題”的游戲,其玩法如下:如圖,設有個圓盤依其半徑大小,大的在下,小的在上套在柱上,現要將套在柱上的盤換到柱上,要求每次只能搬動一個,而且任何時候不允許將大盤套在小盤上面,假定有三根柱子可供使用.

現用表示將個圓盤全部從柱上移到柱上所至少需要移動的次數,回答下列問題:

(1)寫出 并求出

(2)記 求和(其中表示所有的積的和)

(3)證明:

查看答案和解析>>

科目:高中數學 來源:2010年重慶市西南師大附中高三下學期五月月考數學(理) 題型:解答題

(本小題滿分12分)
古代印度婆羅門教寺廟內的僧侶們曾經玩過一種被稱為“河內寶塔問題”的游戲,其玩法如下:如圖,設有n)個圓盤依其半徑大小,大的在下,小的在上套在A柱上,現要將套在A柱上的盤換到C柱上,要求每次只能搬動一個,而且任何時候不允許將大盤套在小盤上面,假定有三根柱子A、B、C可供使用.

現用an表示將n個圓盤全部從A柱上移到C柱上所至少需要移動的次數,回答下列問題:
(1)   寫出a1,a2,a3,并求出an;
(2)   記,求和);
(其中表示所有的積的和)
(3)   證明:

查看答案和解析>>

科目:高中數學 來源:2010-2011學年重慶市高三5月月考考試理科數學 題型:解答題

本小題滿分12分)

古代印度婆羅門教寺廟內的僧侶們曾經玩過一種被稱為“河內寶塔問題”的游戲,其玩法如下:如圖,設有個圓盤依其半徑大小,大的在下,小的在上套在A桿上,現要將套在A柱上的盤換到C柱上,要求每次只能搬動一個,而且任何不允許將大盤套在小盤上面,假定有三柱子A,B,C可供使用。

現用表示將n個圓盤全部從A柱上移到C上所至少需要移動的次數,回答下列問題:

   (1)寫出,并求出

   (2)記,求和;

       (其中表示所有的積的和)

   (3)證明:

 

查看答案和解析>>

同步練習冊答案
关 闭