已知函數(shù)(x>0)在x = 1處取得極值,其中a,b,c為常數(shù)。(1)試確定a,b的值;    (2)討論函數(shù)f(x)的單調(diào)區(qū)間;

(3)若對任意x>0,不等式恒成立,求c的取值范圍。

(1) .(2)的單調(diào)遞減區(qū)間為,而的單調(diào)遞增區(qū)間為;(3)的取值范圍為


解析:

(I)由題意知,因此,從而

又對求導(dǎo)得

由題意,因此,解得

(II)由(I)知),令,解得

當(dāng)時(shí),,此時(shí)為減函數(shù);

當(dāng)時(shí),,此時(shí)為增函數(shù).

因此的單調(diào)遞減區(qū)間為,而的單調(diào)遞增區(qū)間為

(III)由(II)知,處取得極小值,此極小值也是最小值,要使)恒成立,只需.即,

從而,   解得

所以的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(07年重慶卷理)(13分)

已知函數(shù)(x>0),在x = 1處取得極值3c,其中a,b,c為常數(shù)。

(1)試確定a,b的值;

(2)討論函數(shù)f(x)的單調(diào)區(qū)間;

(3)若對任意x>0,不等式恒成立,求c的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分)已知函數(shù)(x>0)在x = 1處

取得極值–3–c,其中a,b,c為常數(shù)。

(1)試確定a,b的值;

(2)討論函數(shù)f(x)的單調(diào)區(qū)間;

(3)若對任意x>0,不等式恒成立,求c的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù)(x>0)在x = 1處取得極值,其中a,b,c為常數(shù)。

(1)試確定a,b的值;        (2) 討論函數(shù)f(x)的單調(diào)區(qū)間;

(3)若對任意x>0,不等式恒成立,求c的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年普通高等學(xué)校招生全國統(tǒng)一考試?yán)砜茢?shù)學(xué)卷(重慶) 題型:解答題

(本小題滿分13分)已知函數(shù)(x>0)在x = 1處取得極值–3–c,其中a,b,c為常數(shù)。

(1)試確定a,b的值;(6分)

(2)討論函數(shù)f(x)的單調(diào)區(qū)間;(4分)

(3)若對任意x>0,不等式恒成立,求c的取值范圍。(3分)

 

查看答案和解析>>

同步練習(xí)冊答案