【題目】從某食品廠生產(chǎn)的面包中抽取個(gè),測量這些面包的一項(xiàng)質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻數(shù)分布表:

質(zhì)量指標(biāo)值分組

頻數(shù)

(1)在相應(yīng)位置上作出這些數(shù)據(jù)的頻率分布直方圖;

(2)估計(jì)這種面包質(zhì)量指標(biāo)值的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該食品廠生產(chǎn)的這種面包符合“質(zhì)量指標(biāo)值不低于的面包至少要占全部面包的規(guī)定?”

【答案】(1)見解析;(2);(3)見解析.

【解析】試題分析:(1)根據(jù)題設(shè)中的數(shù)據(jù),即可畫出頻率分布直方圖;

(2)利用平均數(shù)的計(jì)算公式,即可求得平均數(shù);

(3)計(jì)算得質(zhì)量指標(biāo)值不低于的面包所占比例的估計(jì)值,即可作出判斷.

試題解析:

(1)畫圖.

(2)質(zhì)量指標(biāo)值的樣本平均數(shù)為

.

所以這種面包質(zhì)量指標(biāo)值的平均數(shù)的估計(jì)值為.

(3)質(zhì)量指標(biāo)值不低于的面包所占比例的估計(jì)值為

,

由于該估計(jì)值大于,故可以認(rèn)為該食品廠生產(chǎn)的這種面包符合“質(zhì)量指標(biāo)值不低于的面包至少要占全部面包的規(guī)定.”

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,平面底面,且在底面正投影點(diǎn)在線段上,,.

(1)證明:;

(2)若,所成角的余弦值為,求鈍二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形與矩形所在平面相互垂直, , , .

(Ⅰ)求證: 平面;

(Ⅱ)求四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線:,點(diǎn)

(1)求點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo);

(2)直線關(guān)于點(diǎn)對(duì)稱的直線的方程;

(3)以為圓心,3為半徑長作圓,直線過點(diǎn),且被圓截得的弦長為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幼兒園雛鷹班的生活老師統(tǒng)計(jì)2018年上半年每個(gè)月的20日的晝夜溫差,和患感冒的小朋友人數(shù)(/人)的數(shù)據(jù)如下:

溫差

患感冒人數(shù)

8

11

14

20

23

26

其中,.

(Ⅰ)請(qǐng)用相關(guān)系數(shù)加以說明是否可用線性回歸模型擬合的關(guān)系;

(Ⅱ)建立關(guān)于的回歸方程(精確到),預(yù)測當(dāng)晝夜溫差升高時(shí)患感冒的小朋友的人數(shù)會(huì)有什么變化?(人數(shù)精確到整數(shù))

參考數(shù)據(jù):.參考公式:相關(guān)系數(shù):,回歸直線方程是 ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)用支出與銷售額之間有如下的對(duì)應(yīng)數(shù)據(jù):

2

4

5

6

8

30

40

60

50

70

1)畫出散點(diǎn)圖;

2)求回歸直線方程;

3)據(jù)此估計(jì)廣告費(fèi)用為10時(shí),銷售收入的值.

參考公式及數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)在同一個(gè)周期內(nèi),當(dāng)時(shí)y取最大值1,當(dāng)時(shí),y取最小值﹣1

(1)求函數(shù)的解析式y=f(x);

(2)函數(shù)y=sinx的圖象經(jīng)過怎樣的變換可得到y=f(x)的圖象?

(3)若函數(shù)f(x)滿足方程f(x)=a(0<a<1),求在[0,2π]內(nèi)的所有實(shí)數(shù)根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究機(jī)構(gòu)對(duì)高三學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù):

x

6

8

10

12

y

2

3

5

6

1)請(qǐng)?jiān)趫D中畫出上表數(shù)據(jù)的散點(diǎn)圖;

2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程

3)試根據(jù)(2)求出的線性回歸方程,預(yù)測記憶力為9的同學(xué)的判斷力.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,以兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)為頂點(diǎn)的四邊形是一個(gè)面積為8的正方形(記為Q).

)求橢圓C的方程;

)設(shè)點(diǎn)P是直線x=﹣4x軸的交點(diǎn),過點(diǎn)P的直線l與橢圓C相交于MN兩點(diǎn),當(dāng)線段MN的中點(diǎn)落在正方形Q內(nèi)(包括邊界)時(shí),求直線l斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案