下圖中的圖形是一個正方體,H、G、F分別是棱ABAD、AA1的中點.現(xiàn)在沿三角形GFH所在平面鋸掉正方體的一個角,問鋸掉的這塊的體積是原正方體體積的幾分之幾?

答案:
解析:

解:因為鋸掉的是正方體的一個角,所以HAAG、AF都垂直,即HA垂直于三角形AGF所在的正方體的上底面,實際上鋸掉的這個角,是以三角形AGF為底面、H為頂點的一個三棱錐,如果我們假設(shè)正方體的棱長為a,則正方體的體積為a3.

三棱錐的底面是直角三角形AGF,而角FAG為90°,GF又分別為AD、AA1的中點,所以AF=AG=a,這樣一來三角形AGF的面積為×a×a=a2,AH是三棱錐的高,H又是AB的中點,所以AH=a,而三棱錐的體積等于底面積與高的乘積再除以3,所以鋸掉的那一角的體積為×a×a2=a3.

a3÷a3=,所以鋸掉的那塊的體積是原正方體體積的.

答:鋸掉的那塊的體積是原正方體體積的.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:上海市十校2012屆高三第二次聯(lián)考數(shù)學(xué)文科試題 題型:022

下圖展示了一個區(qū)間(0,k)(k是一個給定的正實數(shù))到實數(shù)集R的對應(yīng)過程:區(qū)間(0,k)中的實數(shù)m對應(yīng)線段AB上的點M,如圖1;將線段AB彎成半圓弧,圓心為H,如圖2;再將這個半圓置于直角坐標系中,使得圓心H坐標為(0,1),直徑AB平行x軸,如圖3;在圖形變化過程中,圖1中線段AM的長度對應(yīng)于圖3中的圓弧AM的長度,直線HM與直線y=-1相交與點N(n,-1),則與實數(shù)m對應(yīng)的實數(shù)就是n,記作n=f(m).給出下列命題:

(1);

(2)函數(shù)n=f(m)是奇函數(shù);

(3)n=f(m)是定義域上的單調(diào)遞增函數(shù);

(4)n=f(m)的圖象關(guān)于點對稱;

(5)方程f(m)=2的解是

其中正確命題序號為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海市十校2012屆高三第二次聯(lián)考數(shù)學(xué)理科試題 題型:022

下圖展示了一個區(qū)間(0,k)(k是一個給定的正實數(shù))到實數(shù)集R的對應(yīng)過程:區(qū)間(0,k)中的實數(shù)m對應(yīng)線段AB上的點M,如圖1;將線段AB彎成半圓弧,圓心為H,如圖2;再將這個半圓置于直角坐標系中,使得圓心H坐標為(0,1),直徑AB平行x軸,如圖3;在圖形變化過程中,圖1中線段AM的長度對應(yīng)于圖3中的圓弧AM的長度,直線HM與直線y=-1相交與點N(n,-1),則與實數(shù)m對應(yīng)的實數(shù)就是n,記作n=f(m).給出下列命題:

(1);(2)函數(shù)n=f(m)是奇函數(shù);(3)n=f(m)是定義域上的單調(diào)遞增函數(shù);(4)n=f(m)的圖象關(guān)于點對稱;(5)方程f(m)=2的解是

其中正確命題序號為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省懷化市高三第二次模擬考試理科數(shù)學(xué)試卷(解析版) 題型:選擇題

下圖展示了一個由區(qū)間(其中為一正實數(shù))到實數(shù)集R上的映射過程:區(qū)間中的實數(shù)對應(yīng)線段上的點,如圖1;將線段圍成一個離心率為的橢圓,使兩端點、恰好重合于橢圓的一個短軸端點,如圖2 ;再將這個橢圓放在平面直角坐標系中,使其中心在坐標原點,長軸在軸上,已知此時點的坐標為,如圖3,在圖形變化過程中,圖1中線段的長度對應(yīng)于圖3中的橢圓弧ADM的長度.圖3中直線與直線交于點,則與實數(shù)對應(yīng)的實數(shù)就是,記作,

現(xiàn)給出下列5個命題

;   ②函數(shù)是奇函數(shù);③函數(shù)上單調(diào)遞增;   ④.函數(shù)的圖象關(guān)于點對稱;⑤函數(shù)時AM過橢圓的右焦點.其中所有的真命題是:    (   )

A.①③⑤          B.②③④                       C.②③⑤             D.③④⑤

 

查看答案和解析>>

同步練習(xí)冊答案