若采用系統(tǒng)抽樣方法從420人中抽取21人做問卷調(diào)查,為此將他們隨機(jī)編號為1,2,…420,則抽取的21人中,編號在區(qū)間[241,360]內(nèi)的人數(shù)是
 
考點:系統(tǒng)抽樣方法
專題:概率與統(tǒng)計
分析:根據(jù)題意,先求出組距是多少,再計算編號在區(qū)間[241,360]內(nèi)應(yīng)抽取的人數(shù).
解答: 解:根據(jù)題意,從420人中抽取21人做問卷調(diào)查,組距是420÷21=20;
編號在區(qū)間[241,360]內(nèi)應(yīng)抽取的人數(shù)是(360-241+1)÷20=6.
故答案為:6.
點評:本題考查了系統(tǒng)抽樣方法的應(yīng)用問題,解題時應(yīng)明確系統(tǒng)抽樣方法的特點,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
4
+y2=1的左、右焦點分別為F1,F(xiàn)2,M為橢圓上異于長軸端點的一點,∠F1MF2=2θ,△MF1F2的內(nèi)心為I,
則|MI|cosθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C,D是函數(shù)y=sin(ωx+φ)一個周期內(nèi)的圖象上的四個點,如圖所示,A(-
π
6
,0),B為y軸上的點,C為圖象上的最低點,E為該函數(shù)圖象的一個對稱中心,B與D關(guān)于點E對稱,
CD
在△軸上的投影為
π
12
,則ω,φ的值為( 。
A、ω=
1
2
,φ=
π
3
B、ω=
1
2
,φ=
π
6
C、ω=2,φ=
π
6
D、ω=2,φ=
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ex-e2x+a,
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)=0有兩個不同解,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
3
),x∈R.在給定的直角坐標(biāo)系中,運用“五點法”畫出該函數(shù)在x∈[-
π
6
,
6
]的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:y=m(m為實常數(shù))與曲線E:y=|lnx|的兩個交點A、B的橫坐標(biāo)分別為x1、x2,且x1<x2,曲線E在點A、B處的切線PA、PB與y軸分別交于點M、N.有下面5個結(jié)論:
①|(zhì)
MN
|=2;
②三角形PAB可能為等腰三角形;
③若直線l與y軸的交點為Q,則|PQ|=1;
④若點P到直線l的距離為d,則d的取值范圍為(0,1);
⑤當(dāng)x1是函數(shù)g(x)=x2+lnx的零點時,|
AO
|(0為坐標(biāo)原點)取得最小值.
其中正確結(jié)論有
 
.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

式子9 1-log35的值是(  )
A、
3
5
B、
9
25
C、
3
25
D、
3
125

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=(x2+2)lnx,g(x)=2x2+ax,a∈R
(1)證明:f(x)是(0,+∞)上的增函數(shù);
(2)設(shè)F(x)=f(x)-g(x),當(dāng)x∈[1,+∞)時,F(xiàn)(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=8x與橢圓
x2
a2
+
y2
b2
=1有公共焦點F,且橢圓過點D(-
2
,
3
).
(1)求橢圓方程;
(2)過橢圓的上頂點作互相垂直的兩條直線分別交橢圓于另外一點P、Q,試問直線PQ是否經(jīng)過定點,若是,求出定點坐標(biāo);若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案