精英家教網 > 高中數學 > 題目詳情

已知f(x)、g(x)都是定義在R上的函數,f'(x)g(x)+f(x)g'(x)<0,f(x)g(x)=ax,f(1)g(1)+f(-1)g(-1)=數學公式.在區(qū)間[-3,0]上隨機取一個數x,f(x)g(x)的值介于4到8之間的概率是


  1. A.
    數學公式
  2. B.
    數學公式
  3. C.
    數學公式
  4. D.
    數學公式
A
分析:根據函數積的導數公式,可知函數f(x)g(x)在R上是減函數,根據f(x)g(x)=ax,f(1)g(1)+f(-1)g(-1)=.我們可以求出函數解析式,從而可求出f(x)g(x)的值介于4到8之間時,變量的范圍,利用幾何概型的概率公式即可求得.
解答:由題意,∵f'(x)g(x)+f(x)g'(x)<0,
∴[f(x)g(x)]'<0,
∴函數f(x)g(x)在R上是減函數
∵f(x)g(x)=ax,
∴0<a<1
∵f(1)g(1)+f(-1)g(-1)=


∵f(x)g(x)的值介于4到8
∴x∈[-3,-2]
∴在區(qū)間[-3,0]上隨機取一個數x,f(x)g(x)的值介于4到8之間的概率是
故選A.
點評:本題的考點是利用導數確定函數的單調性,主要考查積的導數的運算公式,考查幾何概型,解題的關鍵是確定函數的解析式,利用幾何概型求解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x),g(x)都是定義在R上的函數,g(x)≠0,f(x)=axg(x),f′(x)g(x)<f(x)g′(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,在有窮數列{
f(n)
g(n)
},(n=1,2,…,10)
中任取前k項相加,則前k項和大于
15
16
的概率為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x),g(x)都是定義在R上的函數,g(x)≠0,f(x)g'(x)>f'(x)g(x),f(x)=ax•g(x),(a>0且a≠1)
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,令an=
f(n)
g(n)
,則使數列{an}的前n項和Sn超過
15
16
的最小自然數n的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x),g(x)都是定義在R上的函數,g(x)≠0,f(x)g′(x)>f′(x)g(x),且f(x)=axg(x)(a>0且a≠1,
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,對于有窮數列
f(n)
g(n)
=(n=1,2,…0)
,任取正整數k(1≤k≤10),則前k項和大于
15 
16
的概率是( �。�

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x),g(x)都是定義在R上的函數,且f(x)=g(x)ax(a>0且a≠1),f′(x)g(x)<f(x)g′(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,則a的值為
1
2
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)為奇函數,g(x)為偶函數,且f(x)+g(x)=2log2(1-x)
(1)求f(x)及g(x)的解析式,并指出其單調性(無需證明).
(2)求使f(x)<0的x取值范圍.
(3)設h-1(x)是h(x)=log2x的反函數,若存在唯一的x使
1-h-1(x)1+h-1(x)
=m-2x
成立,求m的取值范圍.

查看答案和解析>>

同步練習冊答案