如圖,將45°直角三角板和30°直角三角板拼在一起,其中45°直角三角板的斜邊與30°直角三角板的30°角所對的直角邊重合.若數(shù)學(xué)公式,則x,y等于


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
B
分析:根據(jù)直角三角形中的邊角關(guān)系求出各邊長,余弦定理求出DB2=x2+y2 ①,Rt△CC′B中,由勾股定理得 BC2=CC'2+C′B2,即 6=(x-1)2+y2 ②,由①②可解得 x、y值.
解答:由題意得,若設(shè) AD=DC=1,則 AC=,AB=2 ,BC=,由題意知,=x•+y•,
△BCD中,由余弦定理得 DB2=DC2+CB2-2DC•CB•cos(45°+90°)=1+6+2×1××=7+2 ,
,∠ADC=90°,∴DB2=x2+y2,∴x2+y2=7+2 ①.
如圖,作 =x ,=y ,則 =+,CC′=x-1,C′B=y,
Rt△CC′B中,由勾股定理得 BC2=CC'2+C′B2,即 6=(x-1)2+y2,②
由①②可得 x=1+,y=,
故選B

點評:本題考查兩個向量的數(shù)量積的定義,數(shù)量積公式的應(yīng)用,余弦定理、勾股定理得應(yīng)用,體現(xiàn)了數(shù)形集合的數(shù)學(xué)思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶二模)如圖1,在直角梯形ABCD中,已知AD∥BC,AD=AB=1,∠BAD=90°,∠BCD=45°,AE⊥BD.將△ABD沿對角線BD折起(圖2),記折起后點A的位置為P且使平面PBD⊥平面BCD.
(1)求三棱錐P-BCD的體積;
(2)求平面PBC與平面PCD所成二面角的平面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:肇慶二模 題型:解答題

如圖1,在直角梯形ABCD中,已知ADBC,AD=AB=1,∠BAD=90°,∠BCD=45°,AE⊥BD.將△ABD沿對角線BD折起(圖2),記折起后點A的位置為P且使平面PBD⊥平面BCD.
(1)求三棱錐P-BCD的體積;
(2)求平面PBC與平面PCD所成二面角的平面角的大小.

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《立體幾何》2013年廣東省十二大市高三二模數(shù)學(xué)試卷匯編(理科)(解析版) 題型:解答題

如圖1,在直角梯形ABCD中,已知AD∥BC,AD=AB=1,∠BAD=90°,∠BCD=45°,AE⊥BD.將△ABD沿對角線BD折起(圖2),記折起后點A的位置為P且使平面PBD⊥平面BCD.
(1)求三棱錐P-BCD的體積;
(2)求平面PBC與平面PCD所成二面角的平面角的大。

查看答案和解析>>

同步練習(xí)冊答案