(本題滿分14分)如圖,已知平面平面,與分別是棱長為1與2的正三角形,//,四邊形為直角梯形,//,,點為的重心,為中點,,
(Ⅰ)當(dāng)時,求證://平面
(Ⅱ)若直線與所成角為,試求二面角的余弦值.
(Ⅰ)見解析;(Ⅱ)二面角的余弦值.
【解析】(1)只須證:連接AG并延長交CE于P點,連接PB,PD,易證NPDF為平行四邊形,然后根據(jù)平行線分分段成比例關(guān)系證DM//PF即可.
(2) 由于本小題建系比較容易,所以易采用空間向量法求二面角即可.先求出二面角兩個面的法向量,然后根據(jù)法向量的夾角與二面角相等或互補進行計算.
(Ⅰ)連延長交于,
因為點為的重心,所以
又,所以,所以//;
因為//,//,所以平面//平面,
又與分別是棱長為1與2的正三角形,
為中點,為中點, //,又//,
所以//,得四點共面
//平面
(Ⅱ)平面平面,易得平面平面,
以為原點,為x軸,為y軸,為z軸建立空間直角坐標(biāo)系,
則,設(shè),
,
,
因為與所成角為,所以,
得,,,
設(shè)平面的法向量,則,取,
面的法向量,
所以二面角的余弦值.
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖2,為了綠化城市,擬在矩形區(qū)域ABCD內(nèi)建一個矩形草坪,另外△AEF內(nèi)部有一文物保護區(qū)域不能占用,經(jīng)過測量AB=100m,BC=80m,AE=30m,AF=20m,應(yīng)該如何設(shè)計才能使草坪面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)
如圖,已知直三棱柱ABC—A1B1C1,,E是棱CC1上動點,F(xiàn)是AB中點,
(1)求證:;
(2)當(dāng)E是棱CC1中點時,求證:CF//平面AEB1;
(3)在棱CC1上是否存在點E,使得二面角A—EB1—B的大小是45°,若存在,求CE的長,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟寧市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分14分)如圖,在四棱錐E-ABCD中,底面ABCD為正方形, AE⊥平面CDE,已知AE=3,DE=4.
(Ⅰ)若F為DE的中點,求證:BE//平面ACF;
(Ⅱ)求直線BE與平面ABCD所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年福建省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題
(本題滿分14分)如圖,正方形、的邊長都是1,平面平面,點在上移動,點在上移動,若()
(I)求的長;
(II)為何值時,的長最;
(III)當(dāng)的長最小時,求面與面所成銳二面角余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:杭州市2010年第二次高考科目教學(xué)質(zhì)量檢測 題型:解答題
(本題滿分14分)如圖,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,,又E、F分別是C1A和C1B的中點。
(1)求證:EF//平面ABC;
(2)求證:平面平面C1CBB1;
(3)求異面直線AB與EB1所成的角。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com