設(shè)m,n是兩條不同的直線,α,β,γ是兩個不同的平面,則下列四個命題中真命題是:
 

①若m?β,α⊥β,則m⊥α;
②若α∥β,m?α,則m∥β;
③若n⊥α,n⊥β,m⊥α,則m⊥β;
④若α⊥γ,β⊥γ,則α⊥β.
考點:空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用空間中線線、線面、面面間的位置關(guān)系求解.
解答: 解:①若m?β,α⊥β,則m與α相交、平行或m?α,故①錯誤;
②若α∥β,m?α,則由平面與平面平行的性質(zhì),得m∥β,故②正確;
③若n⊥α,n⊥β,m⊥α,
則由平面與平面垂直的判定定理和直線與平面垂直的判定定理,得m⊥β,故③正確;
④若α⊥γ,β⊥γ,則α與β平行或相交,故④錯誤.
故答案為:②③.
點評:本題考查命題真假的判斷,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱點(x0,x0)為函數(shù)的不動點,已知函數(shù)f(x)=ax2+bx-b有不動點(1,1)和(-3,-3),求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、12B、24C、40D、72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項等比數(shù)列{an},其前n項和為Sn,且滿足an+1<an,S3=
13
9
a1a2a3=
1
27

(1)求{an}的通項公式;
(2)記數(shù)列bn=(2n+1)•an,其前n項和為Tn,求證:Tn<6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x>0時,f(x)=lg(x2-x),則f(-2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三點A(1,a),B(a+1,-1),C(-2,7),若
AB
AC
,則實數(shù)a的值為( 。
A、-1或-3B、-1或3
C、1或-3D、1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F(x)=f(x)-g(x),其中f(x)=lg(x-1),并且僅當(dāng)(x0,y0)在y=lg(x-1)的圖象上時,(2x0,2y0)在y=g(x)的圖象上.
(1)寫出g(x)的函數(shù)解析式;
(2)當(dāng)x在什么區(qū)間時,F(xiàn)(x)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知已知△ABC的周長是
3
+1,且sinA+sinB=
3
sinC,S△ABC=
3
8
sinC,則cosC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)x,y滿足3x+4y=xy,則x+3y的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案