【題目】已知三棱錐A﹣BCD的所有棱長(zhǎng)都相等,若AB與平面α所成角等于 ,則平面ACD與平面α所成角的正弦值的取值范圍是(
A.[ , ]
B.[ ,1]
C.[ , + ]
D.[ ,1]

【答案】A
【解析】解:∵三棱錐A﹣BCD的所有棱長(zhǎng)都相等,

∴三棱錐A﹣BCD為正四面體,如圖:

設(shè)正四面體的棱長(zhǎng)為2,取CD中點(diǎn)P,連接AP,BP,

則∠BAP為AB與平面ADC所成角.

AP=BP= ,可得sin ,cos∠BAP=

設(shè)∠BAP=θ.

當(dāng)CD與α平行且AB在面ACD外時(shí),平面ACD與平面α所成角的正弦值最小,

為sin( )=sin = ;

當(dāng)CD與α平行且AB在面ACD內(nèi)時(shí),平面ACD與平面α所成角的正弦值最大,

為sin( )=sin cos =

∴平面ACD與平面α所成角的正弦值的取值范圍是[ , ].

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線y2=4x的焦點(diǎn)為F,過點(diǎn)F作直線l與拋物線分別交于兩點(diǎn)A,B,若點(diǎn)M滿足 = + ),過M作y軸的垂線與拋物線交于點(diǎn)P,若|PF|=2,則M點(diǎn)的橫坐標(biāo)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】利用如圖算法在平面直角坐標(biāo)系上打印一系列點(diǎn),則打印的點(diǎn)在圓x2+y2=25內(nèi)的個(gè)數(shù)為(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且asinB+bcosA=0.
(1)求角A的大;
(2)若 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x2+ax+b|在區(qū)間[0,c]內(nèi)的最大值為M(a,b∈R,c>0位常數(shù))且存在實(shí)數(shù)a,b,使得M取最小值2,則a+b+c=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln|x|,g(x)=﹣x2+3,則f(x)g(x)的圖象為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,圓C的參數(shù)方程 (φ為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程是2ρsin(θ+ )=3 ,射線OM:θ= 與圓C的交點(diǎn)為O、P,與直線l的交點(diǎn)為Q,求線段PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù) 的圖象向左平移m(m>0)個(gè)單位長(zhǎng)度,得到的函數(shù)y=f(x)在區(qū)間 上單調(diào)遞減,則m的最小值為

查看答案和解析>>

同步練習(xí)冊(cè)答案