|
|
下列說法正確的是
|
[ ] |
A. |
函數(shù)在其定義域上是減函數(shù)
|
B. |
兩個三角形全等是這兩個三角形面積相等的必要條件
|
C. |
命題“x∈R,x2+x+1>0”的否定是“x∈R,x2+x+1<0”
|
D. |
給定命題p、q,若p∧q是真命題,則p是假命題
|
|
|
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:課標綜合版 專題復(fù)習(xí)
題型:
|
|
已知角α的頂點在原點,始邊與x軸的正半軸重合,終邊經(jīng)過點P(-1,).
(Ⅰ)求sin2α-tanα的值;
(Ⅱ)若函數(shù)f(x)=cos(x+α)cosα+sin(x+α)sinα,求函數(shù)g(x)=f(-2x)-2f2(x)+1在區(qū)間[0,]上的取值范圍.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標綜合版 專題復(fù)習(xí)
題型:
|
|
在區(qū)間(0,1)上任意取兩個實數(shù)a,b,則a+b<的概率為________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)函數(shù)y=f(x)在區(qū)間(a,b)的導(dǎo)函數(shù)(x),(x)在區(qū)間(a,b)的導(dǎo)函數(shù)(x),若在區(qū)間(a,b)上的(x)<0恒成立,則稱函數(shù)f(x)在區(qū)間(a,b)上為“凸函數(shù)”,已知,若當實數(shù)m滿足|m|≤2時,函數(shù)f(x)在區(qū)間(a,b)上為“凸函數(shù)”,則b-a的最大值為
|
[ ] |
A. |
1
|
B. |
2
|
C. |
3
|
D. |
4
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標綜合版 專題復(fù)習(xí)
題型:
|
|
某電視節(jié)目《幸運猜猜猜》有這樣一個競猜環(huán)節(jié),一件價格為9816元的商品,選手只知道1,6,8,9四個數(shù),卻不知其順序,若在競猜中猜出正確價格中的兩個或以上(但不含全對)正確位置,則正確位置會點亮紅燈作為提示;若全對,則所有位置全亮白燈并選手贏得該商品,
(Ⅰ)求某選手在第一次競猜時,亮紅燈的概率;
(Ⅱ)若該選手只有二次機會,則他贏得這件商品的概率為多少?
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標綜合版 專題復(fù)習(xí)
題型:
|
|
若函數(shù)y=f(x)在R上可導(dǎo),且滿足不等x(x)>-f(x)恒成立,常數(shù)a,b滿足a>b則下列不等式一定成立的是
|
[ ] |
A. |
af(b)>bf(a)
|
B. |
af(a)>bf(b)
|
C. |
af(a)<bf(b)
|
D. |
af(b)<bf(a)
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標綜合版 專題復(fù)習(xí)
題型:
|
|
如圖放置的正方形ABCD,AB=1,A,D分別在x軸、y軸的正半軸(含原點)上滑動,則·的最大值是________;
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標綜合版 專題復(fù)習(xí)
題型:
|
|
下表是最近十屆奧運會的年份、屆別、主辦國,以及主辦國在上屆獲得的金牌數(shù)、當屆獲得的金牌數(shù)的統(tǒng)計數(shù)據(jù):
某體育愛好組織,利用上表研究所獲金牌數(shù)與主辦奧運會之間的關(guān)系,求出主辦國在上屆所獲金牌數(shù)(設(shè)為x)與在當屆所獲金牌數(shù)(設(shè)為y)之間的線性回歸方程=,在2008年第29屆北京奧運會上英國獲得19塊金牌,則據(jù)此線性回歸方程估計在2012年第30屆倫敦奧運會上英國將獲得的金牌數(shù)為(所有金牌數(shù)精確到整數(shù))
|
[ ] |
A. |
29塊
|
B. |
30塊
|
C. |
31塊
|
D. |
32塊
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標綜合版 專題復(fù)習(xí)
題型:
|
|
化簡的結(jié)果為
|
[ ] |
A. |
1+2i
|
B. |
1–2i
|
C. |
2+i
|
D. |
2–i
|
|
|
查看答案和解析>>