【題目】已知圓與圓

(1)若直線與圓相交于兩個不同點,求的最小值;

(2)直線上是否存在點,滿足經(jīng)過點有無數(shù)對互相垂直的直線,它們分別與圓和圓相交,并且直線被圓所截得的弦長等于直線被圓所截得的弦長?若存在,求出點的坐標;若不存在,請說明理由.

【答案】(1);(2)存在點滿足題意

【解析】試題分析:(1)動直線恒過定點,根據(jù)圓的幾何條件可得取最小值時, ,根據(jù)垂徑定理解出的最小值;(2)兩弦長相等轉(zhuǎn)化為對應(yīng)圓心距相等,根據(jù)點到直線距離公式展開得關(guān)于斜率k的恒等式,再根據(jù)恒等式成立的條件解出點坐標

試題解析:(1)直線過定點 取最小值時,

,∴

(2)設(shè),斜率不存在時不符合題意,舍去;斜率存在時,則 ,

由題意可知,兩弦長相等也就是相等即可,故,∴,化簡得: 對任意恒成立,故,解得

故存在點滿足題意.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣4|x|+1,若f(x)在區(qū)間[a,2a+1]上的最大值為1,則a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點,離心率為,動點

(Ⅰ)求橢圓的標準方程;

(Ⅱ)求以為直徑且被直線截得的弦長為2的圓的方程;

(Ⅲ)設(shè)是橢圓的右焦點,過點的垂線與以為直徑的圓交于點,證明:線段的長為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為直角梯形, ,平面平面, 分別為的中點, 的中點,過作平面分別與交于點.

(Ⅰ)當(dāng)中點時,求證:平面平面

(Ⅱ)當(dāng)時,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 ,且圓心在直線上.

Ⅰ)求此圓的方程

Ⅱ)求與直線垂直且與圓相切的直線方程

若點為圓上任意點,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,是邊長為的棱形,且分別是的中點.

(1)證明:平面;

(2)若二面角的大小為,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 .

(1)當(dāng)時,直線的交點,且它在兩坐標軸上的截距相反,求直線的方程;

(2)若坐標原點到直線的距離為,判斷的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間他們參加的5次預(yù)寒成績記錄如下:

甲:82,82,79,95,87

乙:95,75,80,90,85

(1)用莖葉圖表示這兩組數(shù)據(jù);

(2)求甲、乙兩人成績的平均數(shù)與方差;

(3)若現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,你認為選派哪位學(xué)生參加合適,說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn滿足2Sn=an+1﹣2n+1+1,n∈N* , 且a1 , a2+5,a3成等差數(shù)列.
(1)求a1的值;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習(xí)冊答案