【題目】已知是由正整數(shù)組成的無窮數(shù)列,該數(shù)列前項的最大值記為,第項之后各項, , 的最小值記為, .
(I)若為, , , , , , , , ,是一個周期為的數(shù)列(即對任意, ),寫出, , , 的值.
(II)設是正整數(shù),證明: 的充分必要條件為是公比為的等比數(shù)列.
(III)證明:若, ,則的項只能是或者,且有無窮多項為.
【答案】(I), ;(II)見解析;(III)見解析.
【解析】試題分析:(I)根據(jù)已知給出的的定義,直接求出, , , 的值.
(II)分別證明充分性和必要性。充分性:由條件是公比為的等比數(shù)列且為正整數(shù),推導結論;必要性:由結論推導條件。
(III)本問采用反證法,假設中存在大于的項,推導出矛盾。即可得到假設不成立,故中沒有大于2的項,又由于是由正整數(shù)組成的無窮數(shù)列,故中只可能是1和2.然后再進一步證明數(shù)列中存在無窮多個1.
試題解析:(I)由題知,在中,
,
, ,
∴, ,
(II)證明:
充分性:∵是公比為的等比數(shù)列且為正整數(shù),
∴,
∴, ,
∴,( , , ).
必要性:∵,( , , ),
∴,
又∵, ,
∴,
∴, ,
∴,
∴為公比為的等比數(shù)列.
(III)∵, ,
∴,
,
∴對任意, ,
假設中存在大于的項,
設為滿足的最小正整數(shù),
則,對任意, ,
又∵,∴且,
∴,
, ,
故與矛盾,
∴對于任意,有,
即非負整數(shù)列各項只能為或.
科目:高中數(shù)學 來源: 題型:
【題目】為了讓貧困地區(qū)的孩子們過一個溫暖的冬天,某校陽光志愿者社團組織“這個冬天不再冷”冬衣募捐活動,共有50名志愿者參與.志愿者的工作內容有兩項:①到各班做宣傳,倡議同學們積極捐獻冬衣;②整理、打包募捐上來的衣物.每位志愿者根據(jù)自身實際情況,只參與其中的某一項工作.相關統(tǒng)計數(shù)據(jù)如下表所示:
(1)如果用分層抽樣的方法從參與兩項工作的志愿者中抽取5人,再從這5人中選2人,那么“至少有1人是參與班級宣傳的志愿者”的概率是多少?
(2)若參與班級宣傳的志愿者中有12名男生,8名女生,從中選出2名志愿者,用表示所選志愿者中的女生人數(shù),寫出隨機變量的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為實常數(shù)).
(Ⅰ)若為的極值點,求實數(shù)的取值范圍.
(Ⅱ)討論函數(shù)在上的單調性.
(Ⅲ)若存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來許多地市空氣污染較為嚴重,現(xiàn)隨機抽取某市一年(365天)內100天的空氣質量指數(shù)()的監(jiān)測數(shù)據(jù),統(tǒng)計結果如表:
指數(shù) | ||||||
空氣質量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴重污染 |
天數(shù) | 4 | 13 | 18 | 30 | 20 | 15 |
記某企業(yè)每天由空氣污染造成的經濟損失為(單位:元),指數(shù)為.當在區(qū)間內時,對企業(yè)沒有造成經濟損失;當在區(qū)間內時,對企業(yè)造成的經濟損失與成直線模型(當指數(shù)為150時,造成的經濟損失為1100元,當指數(shù)為200時,造成的經濟損失為1400元);當指數(shù)大于300時,造成的經濟損失為2000元.
(1)試寫出的表達式;
(2)試估計在本年內隨機抽取1天,該天經濟損失大于1100且不超過1700元的概率;
(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,這30天中有8天為嚴重污染,完成列聯(lián)表,并判斷是否有的把握認為該市本年度空氣嚴重污染與供暖有關?
非嚴重污染 | 嚴重污染 | 合計 | |
供暖季 | |||
非供暖季 | |||
合計 |
附:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)求曲線在處的切線方程.
(Ⅱ)求的單調區(qū)間.
(Ⅲ)設,其中,證明:函數(shù)僅有一個零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中
(Ⅰ)若函數(shù)存在相同的零點,求的值;
(Ⅱ)若存在兩個正整數(shù),當時,有與同時成立,求的最大值及取最大值時的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足, ,其中.
(1)設,求證:數(shù)列是等差數(shù)列,并求出的通項公式;
(2)設,數(shù)列的前項和為,是否存在正整數(shù),使得對于恒成立,若存在,求出的最小值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com