對(duì)于下列四個(gè)命題:

①任何復(fù)數(shù)的模都是非負(fù)數(shù).

②如果復(fù)數(shù)z1iz2i,z3=-i,z4=2-i,那么這些復(fù)數(shù)的對(duì)應(yīng)點(diǎn)共圓.

③|cosθisinθ|的最大值是,最小值為0.

x軸是復(fù)平面的實(shí)軸,y軸是虛軸.

其中正確的命題有

(A)0個(gè)       (B)1個(gè)      (C)2個(gè)         。―)3個(gè)

 

【答案】

D

【解析】解:任何復(fù)數(shù)的模都是大于等于零的,第一個(gè)命題正確。第二個(gè)命題中,到原點(diǎn)的距離都是,因此共圓,成立,命題3中,復(fù)數(shù)|cosθisinθ|的模為1,因此不正確。命題4,是復(fù)平面的定義,也成立,因此選項(xiàng)為D

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),對(duì)于下列四個(gè)命題:A、存在一個(gè)圓與所有直線相交;B、存在一個(gè)圓與所有直線不相交;C、存在一個(gè)圓與所有直線相切;D、M中的直線所能?chē)傻恼切蚊娣e都相等
其中真命題的代號(hào)是
 
(寫(xiě)出所有真命題的代號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),對(duì)于下列四個(gè)命題:
(1)M中所有直線均經(jīng)過(guò)一個(gè)定點(diǎn);
(2)存在定點(diǎn)P不在M中的任一條直線上;
(3)對(duì)于任意正整數(shù)n(n≥3),存在正n邊形,其所有邊均在M中的直線上;
(4)M中的直線所能?chē)傻恼切蚊娣e都相等.
其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于下列四個(gè)命題
①若向量
a
,
b
,滿足
a
b
<0
,則
a
b
的夾角為鈍角;
②已知集合A=正四棱柱,B=長(zhǎng)方體,則A∩B=B;
③在直角坐標(biāo)平面內(nèi),點(diǎn)M(|a|,|a-3|)與N(cosα,sinα)在直線x+y-2=0的異側(cè);
④對(duì)2×2數(shù)表定義平方運(yùn)算如下:
ab
cd
)2=
ab
cd
ab
cd
=
a2+bcab+bd
ac+cdbc+d2
,則
10
-11
)2
=
10
-21

其中真命題是
 
(將你認(rèn)為的正確命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于下列四個(gè)命題:①sin(-
π
18
)>sin(-
π
10
)
;②cos(-
25π
4
)>cos(-
17π
4
)
;③tan138°>tan143°;④tan40°>sin40°.其中正確命題的序號(hào)是(  )
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),對(duì)于下列四個(gè)命題:
A.M中所有直線均經(jīng)過(guò)一個(gè)定點(diǎn)
B.存在定點(diǎn)P不在M中的任一條直線上
C.對(duì)于任意整數(shù)n(n≥3),存在正n邊形,其所有邊均在M中的直線上
D.M中的直線所能?chē)傻恼切蚊娣e都相等
其中真命題的代號(hào)是
BC
BC
(寫(xiě)出所有真命題的代號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案