【題目】在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,已知a=bcosC+ csinB.
(1)若a=2,b= ,求c
(2)設(shè)函數(shù)y= sin(2A﹣30°)﹣2sin2(C﹣15°),求y的取值范圍.
【答案】
(1)解:∵a=bccosC+ csinB,
∴sinA=sinBcosC+ sinCsinB,
∴cosBsinC= sinCsinB,
∴tanB= ,
∴∠B= .
∵b2=a2+c2﹣2accosB,
∴c2﹣2c﹣3=0,
∴c=3
(2)解:∵y= sin(2A﹣30°)﹣2sin2(C﹣15°)
= sin(2A﹣30°)﹣1+2cos(2C﹣30°)
= sin(2A﹣30°)﹣cos(2A﹣30°)﹣1
= sin(2A﹣60°)﹣1,
又∵△ABC為銳角三角形,
∴A∈( , ),
∴y∈(﹣1,1]
【解析】(1)由已知利用正弦定理,三角函數(shù)恒等變換的應(yīng)用化簡可得tanB= ,可求∠B= ,利用余弦定理即可解得c的值.(2)利用三角函數(shù)恒等變換的應(yīng)用化簡可得y= sin(2A﹣60°)﹣1,結(jié)合范圍A∈( , ),利用正弦函數(shù)的性質(zhì)即可得解取值范圍.
【考點(diǎn)精析】本題主要考查了余弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握余弦定理:;;才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秦九韶是我國南宋時(shí)代的數(shù)學(xué)家,其代表作《數(shù)書九章》是我國13世紀(jì)數(shù)學(xué)成就的代表之一,秦九韶利用其多項(xiàng)式算法,給出了求高次代數(shù)方程的完整算法,這一成就比西方同樣的算法早五六百年,如圖是該算法求函數(shù)f(x)=x3+x+1零點(diǎn)的程序框圖,若輸入x=﹣1,c=1,d=0.1,則輸出的x的值為( )
A.﹣0.6
B.﹣0.69
C.﹣0.7
D.﹣0.71
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),a為常數(shù)
(1)判斷f(x)在定義域內(nèi)的單調(diào)性
(2)若f(x)在上的最小值為,求a的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn為數(shù)列{an}的前n項(xiàng)的和,且Sn = (an -1)(n∈N*), 數(shù)列{bn }的通項(xiàng)公式bn = 4n+5.
①求證:數(shù)列{an }是等比數(shù)列;
②若d∈{a1 ,a2 ,a3 ,……}∩{b1 ,b2 ,b3 ,……},則稱d為數(shù)列{an }和{bn }的公共項(xiàng),按它們在原數(shù)列中的先后順序排成一個(gè)新的數(shù)列{dn },求數(shù)列{dn }的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知:“直線與圓相交”; :“有一正根和一負(fù)根”.若為真, 為真,求的取值范圍.
(2)已知橢圓: 與圓: ,雙曲線與橢圓有相同的焦點(diǎn),它的兩條漸近線恰好與圓相切.求雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校有2500名學(xué)生,其中高一1000人,高二900人,高三600人,為了了解學(xué)生的身體健康狀況,采用分層抽樣的方法,若從本校學(xué)生中抽取100人,從高一和高三抽取樣本數(shù)分別為a,b,且直線ax+by+8=0與以A(1,﹣1)為圓心的圓交于B,C兩點(diǎn),且∠BAC=120°,則圓C的方程為( )
A.(x﹣1)2+(y+1)2=1
B.(x﹣1)2+(y+1)2=2
C.(x﹣1)2+(y+1)2=
D.(x﹣1)2+(y+1)2=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x|x|+bx+c,給出下列命題:①b=0,c>0時(shí),方程f(x)=0只有一個(gè)實(shí)數(shù)根;②c=0時(shí),y=f(x)是奇函數(shù);③方程f(x)=0至多有兩個(gè)實(shí)根.上述三個(gè)命題中所有正確命題的序號(hào)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x2﹣ (x≠0,常數(shù)a∈R).
(1)討論函數(shù)f(x)的奇偶性,并說明理由;
(2)若f(x)在(﹣∞,﹣2]上為減函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一只口袋有形狀大小質(zhì)地都相同的只小球,這只小球上分別標(biāo)記著數(shù)字.
甲乙丙三名學(xué)生約定:
()每個(gè)不放回地隨機(jī)摸取一個(gè)球;
()按照甲乙丙的次序一次摸;
()誰摸取的球的數(shù)字對打,誰就獲勝.
用有序數(shù)組表示這個(gè)試驗(yàn)的基本事件,例如:表示在一次試驗(yàn)中,甲摸取的是數(shù)字,乙摸取的是數(shù)字,丙摸取的是數(shù)字;表示在一次實(shí)驗(yàn)中,甲摸取的是數(shù),乙摸取的是數(shù)字,丙摸取的是數(shù)字.
(Ⅰ)列出基本事件,并指出基本事件的總數(shù);
(Ⅱ)求甲獲勝的概率;
(Ⅲ)寫出乙獲勝的概率,并指出甲乙丙三名同學(xué)獲勝的概率與其摸取的次序是否有關(guān)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com