【題目】已知公比小于1的等比數(shù)列{an}的前n項(xiàng)和為Sn , a1= 且13a2=3S3(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=nan , 求數(shù)列{bn}的前項(xiàng)n和Tn

【答案】
(1)解:設(shè)等比數(shù)列{an}的公比為q<1,∵a1= ,且13a2=3S3(n∈N*).

∴13a1q=3a1(1+q+q2),化為:3q2﹣10q+3=0,q<1,解得q=

∴an= =2×


(2)解:bn=nan=

∴數(shù)列{bn}的前項(xiàng)n和Tn= +…+ ,

=2 +…+(n﹣1)× +n× ,

=2 =2 =1﹣ ,

∴Tn=


【解析】(1)設(shè)等比數(shù)列{an}的公比為q<1,根據(jù)a1= ,且13a2=3S3(n∈N*).可得13a1q=3a1(1+q+q2),解出即可得出.(2)bn=nan= .利用“錯(cuò)位相減法”與等比數(shù)列的前項(xiàng)n和公式即可得出.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)列的前n項(xiàng)和(數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax-1(x≥0).其中a>0,a≠1.

(1)若f(x)的圖象經(jīng)過(guò)點(diǎn)(,2),求a的值;

(2)求函數(shù)y=f(x)(x≥0)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線:, 上一動(dòng)點(diǎn), 是焦點(diǎn), .

Ⅰ)求的取值范圍;

Ⅱ)過(guò)點(diǎn)的直線相交于兩點(diǎn),求使得面積最小時(shí)的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2sinxsin(x+3φ)是奇函數(shù),其中φ∈(0, ),則函數(shù)g(x)=cos(2x﹣φ)的圖象(
A.關(guān)于點(diǎn)( ,0)對(duì)稱(chēng)
B.可由函數(shù)f(x)的圖象向右平移 個(gè)單位得到
C.可由函數(shù)f(x)的圖象向左平移 個(gè)單位得到
D.可由函數(shù)f(x)的圖象向左平移 個(gè)單位得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,底面為梯形,,,且

若點(diǎn)上一點(diǎn)且,證明:平面;

二面角的大。

在線段上是否存在一點(diǎn),使得?若存在,求出的長(zhǎng);若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,△ABD是邊長(zhǎng)為2的正三角形,PC⊥底面ABCD,AB⊥BP,BC=

(1)求證:PA⊥BD;
(2)若PC=BC,求二面角A﹣BP﹣D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某專(zhuān)營(yíng)店經(jīng)銷(xiāo)某商品,當(dāng)售價(jià)不高于10元時(shí),每天能銷(xiāo)售100件,當(dāng)價(jià)格高于10元時(shí),每提高1元,銷(xiāo)量減少3件,若該專(zhuān)營(yíng)店每日費(fèi)用支出為500元,用x表示該商品定價(jià),y表示該專(zhuān)營(yíng)店一天的凈收入(除去每日的費(fèi)用支出后的收入).

(1)把y表示成x的函數(shù);

(2)試確定該商品定價(jià)為多少元時(shí),一天的凈收入最高?并求出凈收入的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合P={xR|x2-3x+b=0},Q={xR|(x+1)(x2+3x-4)=0}.

(1)若b=4,存在集合M使得PMQ;

(2)若PQ,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求曲線在點(diǎn)(1,f(1))處的切線方程;

2)求經(jīng)過(guò)點(diǎn)A1,3)的曲線的切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案