【題目】(卷號(hào))2040818101747712

(題號(hào))2050752239689728

(題文)

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程為為參數(shù)),曲線C的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程和直線的普通方程;

(2)設(shè)直線與曲線交于兩點(diǎn),點(diǎn),求的值.

【答案】(1); (2).

【解析】

1)由代入曲線C的極坐標(biāo)方程,即可求出普通方程,消去直線l的參數(shù)方程中的未知量t,即可得到直線的普通方程;(2)因?yàn)橹本和曲線C有兩個(gè)交點(diǎn),所以根據(jù)直線的參數(shù)方程,建立一元二次方程根與系數(shù),得出結(jié)果。

(1)由得曲線的直角坐標(biāo)方程為,

直線的普通方程為.

(2)直線的參數(shù)方程的標(biāo)準(zhǔn)形式為

代入,整理得:,

設(shè)所對(duì)應(yīng)的參數(shù)為,則,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為菱形,底面ABCD,,EF分別是PCAB的中點(diǎn).

1)證明:平面PAD;

2)若,求PD與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC為正三角形,且BCCD2CDBC,將△ABC沿BC翻折.

1)當(dāng)AD2時(shí),求證:平面ABD⊥平面BCD;

2)若點(diǎn)A的射影在△BCD內(nèi),且直線AB與平面ACD所成角為60°,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家物流公司都需要進(jìn)行貨物中轉(zhuǎn),由于業(yè)務(wù)量擴(kuò)大,現(xiàn)向社會(huì)招聘貨車司機(jī),其日工資方案如下:甲公司,底薪80元,司機(jī)毎中轉(zhuǎn)一車貨物另計(jì)4元:乙公司無(wú)底薪,中轉(zhuǎn)40車貨物以內(nèi)(含40車)的部分司機(jī)每車計(jì)6元,超出40車的部分司機(jī)每車計(jì)7元.假設(shè)同一物流公司的司機(jī)一填中轉(zhuǎn)車數(shù)相同,現(xiàn)從這兩家公司各隨機(jī)選取一名貨車司機(jī),并分別記錄其50天的中轉(zhuǎn)車數(shù),得到如下頻數(shù)表:

甲公司送餐員送餐單數(shù)頻數(shù)表

送餐單數(shù)

38

39

40

41

42

天數(shù)

10

15

10

10

5

乙公司送餐員送餐單數(shù)頻數(shù)表

送餐單數(shù)

38

39

40

41

42

天數(shù)

5

10

10

20

5

1)現(xiàn)從記錄甲公司的50天貨物中轉(zhuǎn)車數(shù)中隨機(jī)抽取3天的中轉(zhuǎn)車數(shù),求這3天中轉(zhuǎn)車數(shù)都不小于40的概率;

2)若將頻率視為概率,回答下列兩個(gè)問(wèn)題:

①記乙公司貨車司機(jī)日工資為X(單位:元),求X的分布列和數(shù)學(xué)期望EX);

②小王打算到甲、乙兩家物流公司中的一家應(yīng)聘,如果僅從日工資的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為小王作出選擇,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了了解學(xué)生對(duì)消防知識(shí)的了解情況,從高一年級(jí)和高二年級(jí)各選取100名同學(xué)進(jìn)行消防知識(shí)競(jìng)賽.下圖(1)和圖(2)分別是對(duì)高一年級(jí)和高二年級(jí)參加競(jìng)賽的學(xué)生成績(jī)按分組,得到的頻率分布直方圖.

1)請(qǐng)計(jì)算高一年級(jí)和高二年級(jí)成績(jī)小于60分的人數(shù);

2)完成下面列聯(lián)表,并回答:有多大的把握可以認(rèn)為“學(xué)生所在的年級(jí)與消防常識(shí)的了解存在相關(guān)性”?

成績(jī)小于60分人數(shù)

成績(jī)不小于60分人數(shù)

合計(jì)

高一

高二

合計(jì)

附:臨界值表及參考公式:.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹(shù)上摘下100個(gè)芒果,其質(zhì)量分別在,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.

(1) 經(jīng)計(jì)算估計(jì)這組數(shù)據(jù)的中位數(shù);

(2)現(xiàn)按分層抽樣從質(zhì)量為的芒果中隨機(jī)抽取個(gè),再?gòu)倪@個(gè)中隨機(jī)抽取個(gè),求這個(gè)芒果中恰有個(gè)在內(nèi)的概率.

(3)某經(jīng)銷商來(lái)收購(gòu)芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有個(gè),經(jīng)銷商提出如下兩種收購(gòu)方案:

A:所以芒果以/千克收購(gòu);

B:對(duì)質(zhì)量低于克的芒果以/個(gè)收購(gòu),高于或等于克的以/個(gè)收購(gòu).

通過(guò)計(jì)算確定種植園選擇哪種方案獲利更多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,過(guò)焦點(diǎn)且垂直于x軸的直線被橢圓截得的線段長(zhǎng)為3

(1)求橢圓的方程;

(2)已知P為直角坐標(biāo)平面內(nèi)一定點(diǎn),動(dòng)直線l:與橢圓交于A、B兩點(diǎn),當(dāng)直線PA與直線PB的斜率均存在時(shí),若直線PA與PB的斜率之和為與t無(wú)關(guān)的常數(shù),求出所有滿足條件的定點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某蛋糕店制作并銷售一款蛋糕,制作一個(gè)蛋糕成本3元,且以8元的價(jià)格出售,若當(dāng)天賣不完,剩下的則無(wú)償捐獻(xiàn)給飼料加工廠。根據(jù)以往100天的資料統(tǒng)計(jì),得到如下需求量表。該蛋糕店一天制作了這款蛋糕個(gè),以(單位:個(gè),,)表示當(dāng)天的市場(chǎng)需求量,(單位:元)表示當(dāng)天出售這款蛋糕獲得的利潤(rùn).

需求量/個(gè)

天數(shù)

15

25

30

20

10

(1)當(dāng)時(shí),若時(shí)獲得的利潤(rùn)為,時(shí)獲得的利潤(rùn)為,試比較的大。

(2)當(dāng)時(shí),根據(jù)上表,從利潤(rùn)不少于570元的天數(shù)中,按需求量分層抽樣抽取6天.

(i)求此時(shí)利潤(rùn)關(guān)于市場(chǎng)需求量的函數(shù)解析式,并求這6天中利潤(rùn)為650元的天數(shù);

(ii)再?gòu)倪@6天中抽取3天做進(jìn)一步分析,設(shè)這3天中利潤(rùn)為650元的天數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)大學(xué)先修課程,是在高中開(kāi)設(shè)的具有大學(xué)水平的課程,旨在讓學(xué)有余力的高中生早接受大學(xué)思維方式、學(xué)習(xí)方法的訓(xùn)練,為大學(xué)學(xué)習(xí)乃至未來(lái)的職業(yè)生涯做好準(zhǔn)備.某高中開(kāi)設(shè)大學(xué)先修課程已有兩年,兩年共招收學(xué)生2000人,其中有300人參與學(xué)習(xí)先修課程,兩年全校共有優(yōu)等生200人,學(xué)習(xí)先修課程的優(yōu)等生有60人.這兩年學(xué)習(xí)先修課程的學(xué)生都參加了考試,并且都參加了某高校的自主招生考試(滿分100分),結(jié)果如下表所示:

分?jǐn)?shù)

人數(shù)

20

55

105

70

50

參加自主招生獲得通過(guò)的概率

0.9

0.8

0.6

0.5

0.4

(1)填寫(xiě)列聯(lián)表,并畫(huà)出列聯(lián)表的等高條形圖,并通過(guò)圖形判斷學(xué)習(xí)先修課程與優(yōu)等生是否有關(guān)系,根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系?

優(yōu)等生

非優(yōu)等生

總計(jì)

學(xué)習(xí)大學(xué)先修課程

沒(méi)有學(xué)習(xí)大學(xué)先修課程

總計(jì)

(2)已知今年有150名學(xué)生報(bào)名學(xué)習(xí)大學(xué)先修課程,以前兩年參加大學(xué)先修課程學(xué)習(xí)成績(jī)的頻率作為今年參加大學(xué)先修課程學(xué)習(xí)成績(jī)的概率.

①在今年參與大學(xué)先修課程的學(xué)生中任取一人,求他獲得某高校自主招生通過(guò)的概率;

②設(shè)今年全校參加大學(xué)先修課程的學(xué)生獲得某高校自主招生通過(guò)的人數(shù)為,求.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

參考公式:,其中.

查看答案和解析>>

同步練習(xí)冊(cè)答案