已知函數(shù)是定義在上的奇函數(shù),若對于任意給定的不等實數(shù),不等式恒成立,則不等式的解集為          .

試題分析:先利用不等式(x1-x2)[f(x1)-f(x2)]<0恒成立得到函數(shù)f(x)是定義在R上的減函數(shù);再利用函數(shù)f(x+1)是定義在R上的奇函數(shù)得到函數(shù)f(x)過(1,0)點,二者相結(jié)合即可求出不等式f(1-x)<0的解集解:由不等式(x1-x2)[f(x1)-f(x2)]<0恒成立得,函數(shù)f(x)是定義在R上的減函數(shù) ①.又因為函數(shù)f(x+1)是定義在R上的奇函數(shù),所以有函數(shù)f(x+1)過點(0,0);故函數(shù)f(x)過點(1,0)②.①②相結(jié)合得:x>1時,f(x)<0.故不等式f(1-x)<0轉(zhuǎn)化為1-x>1⇒x<0.故答案為
點評:本題主要考查函數(shù)奇偶性和單調(diào)性的綜合應(yīng)用問題.關(guān)鍵點有兩處:①判斷出函數(shù)f(x)的單調(diào)性;②利用奇函數(shù)的性質(zhì)得到函數(shù)f(x)過(1,0)點。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,則=(   )
A.B.   C.0  D.無法求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

隨著機構(gòu)改革工作的深入進(jìn)行,各單位要減員增效。有一家公司現(xiàn)有職員人,(,且為偶數(shù)),每人每年可創(chuàng)利萬元。據(jù)評估,在經(jīng)營條件不變的前提下,每裁員1人,則留崗職員每人每年可多創(chuàng)利萬元,但公司需支付下崗職員每人每年萬元的生活費,并且該公司正常運轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有員工的,為獲得最大的經(jīng)濟效益,該公司應(yīng)裁員多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,
(1)當(dāng)時,解不等式;
(2)若,解關(guān)于的不等式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為全集,,則(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)均為整數(shù)的點稱為整點,如果函數(shù)的圖象恰好通過個整點,則稱函數(shù)階整點函數(shù)。有下列函數(shù):
;  ②   ③     ④,
其中是一階整點函數(shù)的是(       )
A.①②③④B.①③④C.①④D.④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù),
(1)若時,在其定義域內(nèi)單調(diào)遞增,求的取值范圍;
(2)設(shè)函數(shù)的圖象與函數(shù)的圖象交于,兩點,過線段的中點軸的垂線分別交于點,,問是否存在點,使處的切線與處的切線平行?若存在,求的橫坐標(biāo),若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)="2" sin(0≤x≤5),點A、B分別是函數(shù)y=f(x)圖像上的最高點和最低點.
(1)求點A、B的坐標(biāo)以及·的值;
(2)沒點A、B分別在角的終邊上,求tan()的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù)為常數(shù))。
(Ⅰ)函數(shù)的圖象在點()處的切線與函數(shù)的圖象相切,求實數(shù)的值;
(Ⅱ)設(shè),若函數(shù)在定義域上存在單調(diào)減區(qū)間,求實數(shù)的取值范圍;
(Ⅲ)若,對于區(qū)間[1,2]內(nèi)的任意兩個不相等的實數(shù),,都有
成立,求的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案