【題目】2016年10月9日,教育部考試中心下發(fā)了《關(guān)于2017年普通高考考試大綱修訂內(nèi)容的通知》,在各科修訂內(nèi)容中明確提出,增加中華優(yōu)秀傳統(tǒng)文化的考核內(nèi)容,積極培育和踐行社會主義核心價值觀,充分發(fā)揮高考命題的育人功能和積極導(dǎo)向作用.宿州市教育部門積極回應(yīng),編輯傳統(tǒng)文化教材,在全市范圍內(nèi)開設(shè)書法課,經(jīng)典誦讀等課程.為了了解市民對開設(shè)傳統(tǒng)文化課的態(tài)度,教育機構(gòu)隨機抽取了200位市民進行了解,發(fā)現(xiàn)支持開展的占,在抽取的男性市民120人中持支持態(tài)度的為80人.
(Ⅰ)完成列聯(lián)表,并判斷是否有的把握認為性別與支持與否有關(guān)?
(Ⅱ)為了進一步征求對開展傳統(tǒng)文化的意見和建議,從抽取的200位市民中對不支持的按照分層抽樣的方法抽取5位市民,并從抽取的5人中再隨機選取2人進行座談,求選取的2人恰好為1男1女的概率.
附: .
【答案】(Ⅰ)見解析;(Ⅱ) .
【解析】試題分析:⑴由條件已知填寫列連表,利用列連表計算,然后對照表中得出結(jié)論;⑵計算出所抽取位市民中男性市民和女性市民的人數(shù),運用古典概型計算概率值即可。
解析:(Ⅰ)抽取的男性市民為120人,持支持態(tài)度的為人,男性公民中持支持態(tài)度的為80人,列出列聯(lián)表如下:
支持 | 不支持 | 合計 | |
男性 | 80 | 40 | 120 |
女性 | 70 | 10 | 80 |
合計 | 150 | 50 | 200 |
所以,
所以在犯錯誤的概率不超過0.1%的前提下,可以認為性別與支持與否有關(guān).
(Ⅱ)抽取的5人中抽到的男性的人數(shù)為: ,女性的人數(shù)為:
記被抽取4名男性市民為A,B,C,D,1名女性市民為e,
從5人中抽取的2人的所有抽法有:AB,AC,AD,Ae,BC,BD,Be,CD,Ce,De,共有10種,
恰有1名女性的抽法有:Ae ,Be ,Ce ,De,共有4種,
由于每人被抽到是等可能的,
所以由古典概型得
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱中,底面為等腰直角三角形, , , 若、、別是棱、、的中點,則下列四個命題:
;
②三棱錐的外接球的表面積為;
③三棱錐的體積為;
④直線與平面所成角為
其中正確的命題有__________.(把所有正確命題的序號填在答題卡上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知梯形如圖(1)所示,其中, ,四邊形是邊長為的正方形,現(xiàn)沿進行折疊,使得平面平面,得到如圖(2)所示的幾何體.
(Ⅰ)求證:平面平面;
(Ⅱ)已知點在線段上,且平面,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線: 的焦點為,圓: ,過作垂直于軸的直線交拋物線于、兩點,且的面積為.
(1)求拋物線的方程和圓的方程;
(2)若直線、均過坐標原點,且互相垂直, 交拋物線于,交圓于, 交拋物線于,交圓于,求與的面積比的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)在的人基本每天都離不開手機,許多人手機一旦不在身邊就不舒服,幾乎達到手機二十四小時不離身,這類人群被稱為“手機控”,這一群體在大學(xué)生中比較突出.為了調(diào)查大學(xué)生每天使用手機的時間,某調(diào)查公司針對某高校男生、女生各25名學(xué)生進行了調(diào)查,其中每天使用手機時間超過8小時的被稱為:“手機控”,否則被稱為“非手機控”.調(diào)查結(jié)果如下:
手機控 | 非手機控 | 合計 | |
女生 | 5 | ||
男生 | 10 | ||
合計 | 50 |
(1)將上面的列聯(lián)表補充完整,再判斷是否有99.5%的把握認為“手機控”與性別有關(guān),說明你的理由;
(2)現(xiàn)從被調(diào)查的男生中按分層抽樣的方法選出5人,再從這5人中隨機選取3人參加座談會,記這3人中“手機控”的人數(shù)為,試求的分布列與數(shù)學(xué)期望.
參考公式: ,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的一個焦點與拋物線的焦點重合,且過點.過點的直線交橢圓于, 兩點, 為橢圓的左頂點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)求面積的最大值,并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當時,求的單調(diào)區(qū)間;
(2)若的圖象與軸交于兩點,起,求的取值范圍;
(3)令, ,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐,底面為菱形,,為上的點,過的平面分別交,于點,,且平面.
(1)證明:;
(2)當為的中點,,與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com