【題目】關(guān)于函數(shù),有下列結(jié)論:

的定義域?yàn)?/span>(-1, 1); 的值域?yàn)?/span>(, );

的圖象關(guān)于原點(diǎn)成中心對稱; 在其定義域上是減函數(shù);

⑤對的定義城中任意都有.

其中正確的結(jié)論序號為__________.

【答案】①③⑤

【解析】

根據(jù)對數(shù)函數(shù)的定義求得函數(shù)的定義域,得到①正確,根據(jù)對數(shù)函數(shù)的奇偶性的定義,判定③正確,根據(jù)函數(shù)單調(diào)性的定義求得④不正確,根據(jù)對數(shù)函數(shù)的性質(zhì)求得②不正確;根據(jù)對數(shù)的運(yùn)算性質(zhì)可判定⑤正確.

由題意,函數(shù),所以,解得,

所以函數(shù)的定義域?yàn)?/span>,所以①是正確的;

,令,則,

,解得,所以函數(shù)的值域?yàn)?/span>R,所以②是不正確;

因?yàn)?/span>,所以函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對稱,所以③是正確的;

設(shè),且

因?yàn)?/span>,,所以,所以,

,所以函數(shù)定義域上的單調(diào)遞增函數(shù),所以④不正確;

,所以⑤是正確的;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實(shí)施一項(xiàng)將重塑全球汽車行業(yè)的計劃.年某企業(yè)計劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場分析,全年需投入固定成本萬元,每生產(chǎn)(百輛),需另投入成本萬元,且.由市場調(diào)研知,每輛車售價萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.

(1)求出2018年的利潤(萬元)關(guān)于年產(chǎn)量(百輛)的函數(shù)關(guān)系式;(利潤=銷售額-成本)

(2)2018年產(chǎn)量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某居民區(qū)隨機(jī)抽取10個家庭,獲得第i個家庭的月收入單位:千元與月儲蓄單位:千元的數(shù)據(jù)資料,算得,,附:線性回歸方程中,,,其中,為樣本平均值.

求家庭的月儲蓄y對月收入x的線性回歸方程

判斷變量xy之間是正相關(guān)還是負(fù)相關(guān);

若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲蓄.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將5名實(shí)習(xí)生分配到三個班實(shí)習(xí),每班至少1名,則分配方案共有( )

A. 240種 B. 150種 C. 180 D. 60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校共有學(xué)生15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動時間的樣本數(shù)據(jù)(單位:小時).

1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?

2)根據(jù)這300樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為: .估計該校學(xué)生每周平均體育運(yùn)動時間超過4小時的概率;

3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動時間超過4小時,請完成每周平均體育運(yùn)動時間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為該校學(xué)生的每周平均體育運(yùn)動時間與性別有關(guān)


0.10

0.05

0.010

0.005


2.706

3.841

6.635

7.879

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知立方和公式:

求函數(shù)的值域;

求函數(shù),的值域;

若任意實(shí)數(shù)x,不等式恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣lnx,g(x)=x2﹣ax.
(1)求函數(shù)f(x)在區(qū)間[t,t+1](t>0)上的最小值m(t);
(2)令h(x)=g(x)﹣f(x),A(x1 , h(x1)),B(x2 , h(x2))(x1≠x2)是函數(shù)h(x)圖象上任意兩點(diǎn),且滿足 >1,求實(shí)數(shù)a的取值范圍;
(3)若x∈(0,1],使f(x)≥ 成立,求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有一些大小相同的小球,其中號數(shù)為1的小球1個,號數(shù)為2的小球2個,號數(shù)為3的小球3個,,號數(shù)為n的小球有n個,從袋中取一球,其號數(shù)記為隨機(jī)變量,則的數(shù)學(xué)期望E=______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與直線都經(jīng)過點(diǎn).直線平行,且與橢圓交于兩點(diǎn),直線軸分別交于兩點(diǎn).

(1)求橢圓的方程;

(2)證明: 為等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案