若實(shí)數(shù)x,y滿足不等式組,目標(biāo)函數(shù)t=x-2y的最大值為2,則實(shí)數(shù)a的值是( )
A.-2
B.0
C.1
D.2
【答案】分析:先畫出可行域,結(jié)合圖形分析出目標(biāo)函數(shù)t=x-2y取得最大值時(shí)對(duì)應(yīng)點(diǎn)的坐標(biāo),把其代入目標(biāo)函數(shù)再結(jié)合目標(biāo)函數(shù)t=x-2y的最大值為2即可求出實(shí)數(shù)a的值.
解答:解:實(shí)數(shù)x,y滿足不等式組如圖,
顯然當(dāng)x=2,時(shí),
目標(biāo)函數(shù)t=x-2y取得最大值,
即2=2-2×
解得:a=2
故選D.
點(diǎn)評(píng):本題主要考查簡單線性規(guī)劃的應(yīng)用以及數(shù)形結(jié)合思想的應(yīng)用.在求目標(biāo)函數(shù)的最值時(shí),一般是在可行域的特殊點(diǎn)處,所以一般在解選擇和填空題時(shí),常用特殊點(diǎn)代入法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x),若對(duì)任意不等實(shí)數(shù)x1,x2滿足
f(x1)-f(x2)
x1-x2
<0
,且對(duì)于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,則當(dāng) 1≤x≤4時(shí),
y
x
的取值范圍為
[-
1
2
,1]
[-
1
2
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年重慶一中高三(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對(duì)任意不等實(shí)數(shù)x1,x2滿足,且對(duì)于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,則當(dāng) 1≤x≤4時(shí),的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年山東省實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對(duì)任意不等實(shí)數(shù)x1,x2滿足,且對(duì)于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,則當(dāng) 1≤x≤4時(shí),的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年山東省淄博市高考數(shù)學(xué)模擬試卷3(理科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對(duì)任意不等實(shí)數(shù)x1,x2滿足,且對(duì)于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,則當(dāng) 1≤x≤4時(shí),的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年山東省實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

定義在R上的函數(shù)y=f(x),若對(duì)任意不等實(shí)數(shù)x1,x2滿足,且對(duì)于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,則當(dāng) 1≤x≤4時(shí),的取值范圍為   

查看答案和解析>>

同步練習(xí)冊答案