精英家教網 > 高中數學 > 題目詳情
已知橢圓與雙曲線有相同的焦點,若cam的等比中項,n2是2m2c2的等差中項,則橢圓的離心率為
A.B.C.D.
A

試題分析:根據是a、m的等比中項可得c2=am,根據橢圓與雙曲線有相同的焦點可得a2+b2=m2+n2=c,根據n2是2m2與c2的等差中項可得2n2=2m2+c2,聯(lián)立方程即可求得a和c的關系,進而求得離心率e.
解:根據題意, ,故選A.
點評:本題主要考查了橢圓的性質,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

動圓過定點,且與直線相切,其中.設圓心的軌跡的程為
(1)求;
(2)曲線上的一定點(0) ,方向向量的直線(不過P點)與曲線交與A、B兩點,設直線PA、PB斜率分別為,,計算
(3)曲線上的兩個定點、,分別過點作傾斜角互補的兩條直線分別與曲線交于兩點,求證直線的斜率為定值;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C:
(1)若橢圓的長軸長為4,離心率為,求橢圓的標準方程;
(2)在(1)的條件下,設過定點M(0,2)的直線l與橢圓C交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標原點),求直線l的斜率k的取值范圍

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知坐標平面上點與兩個定點的距離之比等于5.
(1)求點的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中的軌跡為,過點的直線所截得的線段的長為8,求直線的方程

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

在平面直角坐標系中,已知△ABC頂點,頂點B在橢圓上,則      .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

,在平面直角坐標系中,已知向量,向量,,動點的軌跡為E.
(1)求軌跡E的方程,并說明該方程所表示曲線的形狀;
(2)已知,證明:存在圓心在原點的圓,使得該圓的任意一條切線與軌跡E恒有兩個交點A,B,且(O為坐標原點),并求出該圓的方程;
(3)已知,設直線與圓C:(1<R<2)相切于A1,且與軌跡E只有一個公共點B1,當R為何值時,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若橢圓的兩個焦點與它的短軸的兩個端點是一個正方形的四個頂點,則橢圓的離心率為         .    

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設命題p:函數上是增函數;命題q:方程有兩個不相等的負實數根。求使得pq是真命題的實數對為坐標的點的軌跡圖形及其面積。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知分別是雙曲線,)的兩個焦點,是以為圓心,以為半徑的圓與該雙曲線左支的兩個交點,且是等邊三角形,則該雙曲線的離心率為(   )
A.B.C.2D.

查看答案和解析>>

同步練習冊答案