如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結論正確的是(  )

A.PB⊥AD

B.平面PAB⊥平面PBC

C.直線BC∥平面PAE

D.直線PD與平面ABC所成的角為45°

 

D

【解析】∵AD與PB在平面ABC內的射影AB不垂直,∴A不正確;易知平面PAB⊥平面PAE,∴B不正確;∵BC∥AD,∴∠PDA=45°,∴D正確.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-3圓的方程(解析版) 題型:選擇題

已知圓C:x2+y2+mx-4=0上存在兩點關于直線x-y+3=0對稱,則實數(shù)m的值為(  )

A.8 B.-4 C.6 D.無法確定

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-7立體幾何中的向量方法(解析版) 題型:填空題

已知棱長為1的正方體ABCD-A1B1C1D1中,E是A1B1的中點,則直線AE與平面ABC1D1所成角的正弦值為________.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-6空間向量及運算(解析版) 題型:選擇題

△ABC的頂點分別為A(1,-1,2),B(5,-6,2),C(1,3,-1),則AC邊上的高BD等于(  )

A.5 B. C.4 D.2

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-5直線、平面垂直的判定及性質(解析版) 題型:解答題

在如圖所示的幾何體中,正方形ABCD和矩形ABEF所在的平面互相垂直,M為AF的中點,BN⊥CE.

(1)求證:CF∥平面MBD;

(2)求證:CF⊥平面BDN.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-5直線、平面垂直的判定及性質(解析版) 題型:選擇題

已知α,β表示兩個不同的平面,m為平面α內的一條直線,則“α⊥β”是“m⊥β”的(  )

A.充分不必要條件 B.必要不充分條件

C.充要條件 D.既不充分也不必要條件

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-4直線、平面平行的判定及性質(解析版) 題型:填空題

對于平面M與平面N,有下列條件:①M,N都垂直于平面Q;②M、N都平行于平面Q;③M內不共線的三點到N的距離相等;④l,m為兩條平行直線,且l∥M,m∥N;⑤l,m是異面直線,且l∥M,m∥M;l∥N,m∥N,則可判定平面M與平面N平行的條件是________(填正確結論的序號).

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-3空間點直線平面之間的位置關系(解析版) 題型:選擇題

如圖,若Ω是長方體ABCD-A1B1C1D1被平面EFGH截去幾何體EFGHB1C1后得到的幾何體,其中E為線段A1B1上異于B1的點,F(xiàn)為線段BB1上異于B1的點,且EH∥A1D1,則下列結論中不正確的是(  )

A.EH∥FG

B.四邊形EFGH是矩形

C.Ω是棱柱

D.Ω是棱臺

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-6直接證明與間接證明(解析版) 題型:填空題

若a,b,c是不全相等的正數(shù),給出下列判斷:

①(a-b)2+(b-c)2+(c-a)2≠0;

②a>b與a<b及a=b中至少有一個成立;

③a≠c,b≠c,a≠b不能同時成立.

其中判斷正確的是________.

 

查看答案和解析>>

同步練習冊答案