【題目】5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,那么概率為的事件是(

A.至多一件一等品B.至少一件一等品

C.至多一件二等品D.至少一件二等品

【答案】AD

【解析】

5件產(chǎn)品中任取2件,有種結(jié)果,至多一件一等品有種情況,至少一件一等品有種情況,至多一件二等品有種情況,至少一件二等品有種情況,結(jié)合古典概型概率計(jì)算公式可得結(jié)果.

5件產(chǎn)品中任取2件,共有種結(jié)果,

∵“任取的2件產(chǎn)品至多一件一等品”有種情況,其概率是,故A正確;

“任取的2件產(chǎn)品中至少一件一等品”有種情況,

其概率是,故B錯(cuò)誤;

“任取的2件產(chǎn)品中至多一件二等品”有種情況,其概率是,故C錯(cuò)誤;

“任取的2件產(chǎn)品在至少一件二等品”有種情況,其概率是,故D正確;

故選:AD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象過(guò)點(diǎn),且在點(diǎn)處的切線斜率為8

1)求的值;

2)求函數(shù)的單調(diào)區(qū)間;

3)求函數(shù)在區(qū)間上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體的棱長(zhǎng)為1P,Q分別是線段上的動(dòng)點(diǎn),且滿足,則下列命題錯(cuò)誤的是(

A.存在P,Q的某一位置,使

B.的面積為定值

C.當(dāng)時(shí),直線是異面直線

D.無(wú)論PQ運(yùn)動(dòng)到任何位置,均有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若函數(shù)有三個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)在橢圓上

)求橢圓的方程

設(shè)動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),判斷是否存在以原點(diǎn)為圓心的圓,滿足此圓與相交于兩點(diǎn) (兩點(diǎn)均不在坐標(biāo)軸上),且使得直線的斜率之積為定值?若存在,求此圓的方程;若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)若,則,滿足什么條件時(shí),曲線處總有相同的切線?

2)當(dāng)時(shí),求函數(shù)的單調(diào)減區(qū)間;

3)當(dāng)時(shí),若對(duì)任意的恒成立,求的取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代著名的數(shù)學(xué)家劉徽著有《海島算經(jīng)》.內(nèi)有一篇:“今有望海島,立兩表齊、高三丈,前后相去千步,今后表與前表相直,從前表卻行百二十三步,人目著地望島峰,與表末參合.從后表卻行百二十七步,人目著地取望島峰,亦與表末參合.問(wèn)島高及去表各幾何?”(參考譯文:假設(shè)測(cè)量海島,立兩根標(biāo)桿,高均為5步,前后相距1000步,令前后兩根標(biāo)桿的底部和島的底部在同一水平直線上,從前標(biāo)桿退行123步,人的視線從地面(人的高度忽略不計(jì))過(guò)標(biāo)桿頂恰好觀測(cè)到島峰,從后標(biāo)桿退行127步,人的視線從地面過(guò)標(biāo)桿頂恰好觀測(cè)到島峰,問(wèn)島高多少?島與前標(biāo)桿相距多遠(yuǎn)?)(丈、步為古時(shí)計(jì)量單位,三丈=5步).則海島高度為

A. 1055步 B. 1255步 C. 1550步 D. 2255步

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為,且().

(1);

(2)設(shè)函數(shù)(),求數(shù)列的前n項(xiàng)和;

(3)設(shè)為實(shí)數(shù),對(duì)滿足的任意正整數(shù)m,n,k,不等式 恒成立,試求實(shí)數(shù)的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sna1=3,an+1=2Sn+3(n∈N*).

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn=log3an,若數(shù)列的前n項(xiàng)和為Tn,證明:Tn<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案