【題目】已知數(shù)列滿足:,且(n=1,2,...).記
集合
(1)(Ⅰ)若,寫(xiě)出集合M的所有元素;
(2)(Ⅱ)若集合M存在一個(gè)元素是3的倍數(shù),證明:M的所有元素都是3的倍數(shù);
(3)(Ⅲ)求集合M的元素個(gè)數(shù)的最大值.

【答案】
(1)

{6,12,24}


(2)

證明:(Ⅱ)因?yàn)榧螹存在一個(gè)元素是3的倍數(shù),所以不妨設(shè) ak 是3的倍數(shù),由已知 ,可用用數(shù)學(xué)歸納法證明對(duì)任意 n ≥ k , an 是3的倍數(shù),當(dāng) k = 1 時(shí),則M中的所有元素都是3的倍數(shù),如果 k > 1 時(shí),因?yàn)?ak = 2ak-1 或 2ak-1 -36 ,所以 2ak-1 是3的倍數(shù),于是 ak-1 是3的倍數(shù),類似可得, ak -2 . . . . . . a1 都是3的倍數(shù),從而對(duì)任意 n ≥ 1 , an 是3的倍數(shù),因此M的所有元素都是3的倍數(shù).


(3)

8


【解析】(Ⅰ)由已知可知:,因此
(Ⅱ)因?yàn)榧螹存在一個(gè)元素是3的倍數(shù),所以不妨設(shè)是3的倍數(shù),由已知,可用用數(shù)學(xué)歸納法證明對(duì)任意,是3的倍數(shù),當(dāng)時(shí),則M中的所有元素都是3的倍數(shù),如果時(shí),因?yàn)?/span>,所以是3的倍數(shù),于是是3的倍數(shù),類似可得,都是3的倍數(shù),從而對(duì)任意是3的倍數(shù),因此M的所有元素都是3的倍數(shù).
(III )由于M中的元素都不超過(guò)36,由,易得,類似可得,其次M中的元素個(gè)數(shù)最多除了前面兩個(gè)數(shù)外,都是4的倍數(shù),因?yàn)榈诙鐢?shù)必定為偶數(shù),由的定義可知,第三個(gè)數(shù)后面的數(shù)必定是4的倍數(shù),另外,M中的數(shù)除以9的余數(shù),由定義可知,除以9的余數(shù)一樣,
(1)若中有3的倍數(shù),由(2)知:所有都是3的倍數(shù),所以都是3的倍數(shù),所以除以9的余數(shù)為3,6,3,6,......,或6,3,6,3......,或0,0,0......,而除以9余3且是4的倍數(shù)只有12,除以9余6且是4的倍數(shù)只有24,除以9余0且是4的倍數(shù)只有36,則M中的數(shù)從第三項(xiàng)起最多2項(xiàng),加上前面兩項(xiàng),最多4項(xiàng)。
(2)若中沒(méi)有3的倍數(shù),則都不是3的倍數(shù),對(duì)于除以9的余數(shù)只能是1,4,7,2,5,8中的一個(gè),從起,除以9的余數(shù)是1,2,4,8,7,5,1,2,4,8,......,不斷的6項(xiàng)循環(huán)(可能從2,4,8,7或5開(kāi)始),而除以9的余數(shù)是1,2,4,8,5且是4的倍數(shù)(不大于36),只有28,20,4,8,16,32,所以M中的項(xiàng)加上前兩項(xiàng)最多的8項(xiàng),則時(shí),,項(xiàng)數(shù)為8,所以集合M的元素個(gè)數(shù)的最大值為8.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)學(xué)歸納法的步驟的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握

  1. :A.n=1(或時(shí)成立,推的基礎(chǔ)B.設(shè)n=k時(shí)成立; C.n=k+1時(shí)也成立,完成兩步,就可以斷定對(duì)任何自然數(shù)(n>=,)結(jié)論都成立

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·湖北)某廠用鮮牛奶在某臺(tái)設(shè)備上生產(chǎn)兩種奶制品.生產(chǎn)1噸A產(chǎn)品需鮮牛奶2噸,使用設(shè)備1小時(shí),獲利1000元;生產(chǎn)1噸B產(chǎn)品需鮮牛奶1.5噸,使用設(shè)備1.5小時(shí),獲利1200元.要求每天B產(chǎn)品的產(chǎn)量不超過(guò)A產(chǎn)品產(chǎn)量的2倍,設(shè)備每天生產(chǎn)兩種產(chǎn)品時(shí)間之和不超過(guò)12小時(shí). 假定每天可獲取的鮮牛奶數(shù)量W(單位:噸)是一個(gè)隨機(jī)變量,其分布列為

(Ⅰ)求Z的分布列和均值;該廠每天根據(jù)獲取的鮮牛奶數(shù)量安排生產(chǎn),使其獲利最大,因此每天的最大獲利Z(單位:元)是一個(gè)隨機(jī)變量.
(Ⅱ) 若每天可獲取的鮮牛奶數(shù)量相互獨(dú)立,求3天中至少有1天的最大獲利超過(guò)10000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

(2015·重慶)如題(20)圖,三棱錐中,平面平面,,點(diǎn)D、E在線段上,且,點(diǎn)在線段上,且


(1)證明:平面.
(2)若四棱錐P-DFBC的體積為7,求線段BC的長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】上海自貿(mào)區(qū)某種進(jìn)口產(chǎn)品的關(guān)稅稅率為,其市場(chǎng)價(jià)格(單位:千元,與市場(chǎng)供應(yīng)量(單位:萬(wàn)件)之間近似滿足關(guān)系式:

1)請(qǐng)將表示為關(guān)于的函數(shù),并根據(jù)下列條件計(jì)算:若市場(chǎng)價(jià)格為7千元,則市場(chǎng)供應(yīng)量約為2萬(wàn)件.試確定的值;

2)當(dāng)時(shí),經(jīng)調(diào)查,市場(chǎng)需求量(單位:萬(wàn)件)與市場(chǎng)價(jià)格近似滿足關(guān)系式:.為保證市場(chǎng)供應(yīng)量不低于市場(chǎng)需求量,試求市場(chǎng)價(jià)格的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】
設(shè)函數(shù)
①若,則的最小值為 ;
②若恰有2個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·湖南)某商場(chǎng)舉行有獎(jiǎng)促銷(xiāo)活動(dòng),顧客購(gòu)買(mǎi)一定金額商品后即可抽獎(jiǎng),每次抽獎(jiǎng)都從裝有4個(gè)紅球、6個(gè)白球的甲箱和裝有5個(gè)紅球、5個(gè)白球的乙箱中,各隨機(jī)摸出1個(gè)球,在摸出的2個(gè)球中,若都是紅球,則獲一等獎(jiǎng);若只有1個(gè)紅球,則獲二等獎(jiǎng);若沒(méi)有紅球,則不獲獎(jiǎng),求下列問(wèn)題:(1)求顧客抽獎(jiǎng)1次能獲獎(jiǎng)的概率(2)若某顧客有3次抽獎(jiǎng)機(jī)會(huì),記該顧客在3次抽獎(jiǎng)中獲一等獎(jiǎng)的次數(shù)為 X ,求 X 的分布列和數(shù)學(xué)期望.
(1)(1)求顧客抽獎(jiǎng)1次能獲獎(jiǎng)的概率
(2)(2)若某顧客有3次抽獎(jiǎng)機(jī)會(huì),記該顧客在3次抽獎(jiǎng)中獲一等獎(jiǎng)的次數(shù)為 , 求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人組成“星隊(duì)”參加猜成語(yǔ)活動(dòng),每輪活動(dòng)由甲、乙各猜一個(gè)成語(yǔ),在一輪活動(dòng)中,如果兩人都猜對(duì),則“星隊(duì)”得3分;如果只有一個(gè)人猜對(duì),則“星隊(duì)”得1分;如果兩人都沒(méi)猜對(duì),則“星隊(duì)”得0分.已知甲每輪猜對(duì)的概率是 ,乙每輪猜對(duì)的概率是 ;每輪活動(dòng)中甲、乙猜對(duì)與否互不影響.各輪結(jié)果亦互不影響.假設(shè)“星隊(duì)”參加兩輪活動(dòng),求:
(1)“星隊(duì)”至少猜對(duì)3個(gè)成語(yǔ)的概率;
(2)“星隊(duì)”兩輪得分之和為X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中 中,已知曲線 經(jīng)過(guò)點(diǎn) ,其參數(shù)方程為 為參數(shù)),以原點(diǎn) 為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線 的極坐標(biāo)方程;
(2)若直線 于點(diǎn) ,且 ,求證: 為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),函數(shù)恒有意義,求實(shí)數(shù)的取值范圍;

(2)是否存在這樣的實(shí)數(shù),使得函數(shù)fx)在區(qū)間上為減函數(shù),并且最大值為?如果存在,試求出的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案