如圖,四棱錐中,⊥底面,底面為菱形,點(diǎn)為側(cè)棱上一點(diǎn).
(1)若,求證:平面; 
(2)若,求證:平面⊥平面.
(1)詳見解析; (2)詳見解析

試題分析:(1) 要證證平面,根據(jù)線面平行的判定定理可轉(zhuǎn)化為線線平行,在本題中可取的交點(diǎn)為,轉(zhuǎn)化為證明,且平面,平面,即可得證平面;(2)要證平面⊥平面,聯(lián)想到面面垂直的判定定理,可轉(zhuǎn)化為證線面垂直,由于底面為菱形,則對(duì)角線,又⊥底面,可得⊥平面,進(jìn)而得到平面,再加之平面,即可證得平面⊥平面
(1) 證:(1)設(shè)的交點(diǎn)為,連底面為菱形,中點(diǎn),
,,                              5分
平面,平面,
平面.                                  7分
(2)底面為菱形,,⊥底面,,⊥平面
平面,
平面,平面⊥平面.                     14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=.

(1)若M為PA中點(diǎn),求證:AC∥平面MDE;
(2)求直線PA與平面PBC所成角的正弦值;
(3)在線段PC上是否存在一點(diǎn)Q(除去端點(diǎn)),使得平面QAD與平面PBC所成銳二面角的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在正三棱柱中,點(diǎn)在邊上,
(1)求證:平面
(2)如果點(diǎn)的中點(diǎn),求證://平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,平面ABCD,AD//BC,AC,,點(diǎn)M在線段PD上.

(1)求證:平面PAC;
(2)若二面角M-AC-D的大小為,試確定點(diǎn)M的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,長(zhǎng)方體中,,點(diǎn)的中點(diǎn)。

(1)求證:直線∥平面
(2)求證:平面平面;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱柱ABCD—A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點(diǎn).

(1)證明B1C1⊥CE;
(2)求二面角B1­CE­C1的正弦值;
(3)設(shè)點(diǎn)M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在底面為平行四邊形的四棱錐中,,
平面,且,點(diǎn)的中點(diǎn).

(1)求證:
(2)求證:平面;
(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

[2013·南京模擬]已知l,m是兩條不同的直線,α,β是兩個(gè)不同的平面,下列命題:
①若l?α,m?α,l∥β,m∥β,則α∥β;
②若l?α,l∥β,α∩β=m,則l∥m;
③若α∥β,l∥α,則l∥β;
④若l⊥α,m∥l,α∥β,則m⊥β.
其中真命題是________(寫出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐中,上一點(diǎn),面,四邊形為矩形 ,,
(1)已知,且∥面,求的值;
(2)求證:,并求點(diǎn)到面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案