已知橢圓的離心率為,點(diǎn)在橢圓上.
(1)求橢圓C的方程;
(2)設(shè)橢圓的左右頂點(diǎn)分別是A、B,過點(diǎn)的動(dòng)直線與橢圓交于M,N兩點(diǎn),連接AN、BM相交于G點(diǎn),試求點(diǎn)G的橫坐標(biāo)的值.

(1)橢圓C方程是;(2)G的橫坐標(biāo)的值為8.

解析試題分析:(1)由,又點(diǎn)在橢圓上,所以,這樣便得一方程組,解這個(gè)方程組求出a、b的值,即可得橢圓C的方程;(2)首先考慮直線MN垂直于軸的情況,易得此時(shí)交點(diǎn)為,由此可知,點(diǎn)G的橫坐標(biāo)應(yīng)當(dāng)為8.當(dāng)直線MN不垂直軸時(shí),設(shè)直線MN:,.由A、N、G三點(diǎn)共線有,由A、N、G三點(diǎn)共線有,有,即,化簡,當(dāng)時(shí)化簡得.接下來聯(lián)立直線MN與橢圓方程再用韋達(dá)定理代入此等式驗(yàn)證即可.
(1)由,又點(diǎn)在橢圓上,所以解得,則橢圓C方程是;                   .3分
(2)當(dāng)直線MN垂直于軸,交點(diǎn)為
由題知直線AN:,直線MB:,交點(diǎn)     .5分
當(dāng)直線MN不垂直軸時(shí),設(shè)直線MN:,
聯(lián)立直線MN與橢圓方程得
,        .7分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2b/0/ynz4p.png" style="vertical-align:middle;" />,由A、N、G三點(diǎn)共線有
同理,由A、N、G三點(diǎn)共線有
,即,化簡,驗(yàn)證當(dāng)時(shí)化簡得帶入韋達(dá)定理恒成立,因此G的橫坐標(biāo)的值為8.   13分
考點(diǎn):1、軌跡方程的求法;2、直線與圓錐曲線的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線-y2=1的左、右頂點(diǎn)分別為A1,A2,點(diǎn)P(x1,y1),Q(x1,-y1)是雙曲線上不同的兩個(gè)動(dòng)點(diǎn).求直線A1P與A2Q交點(diǎn)的軌跡E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

的切線與x軸正半軸,y軸正半軸圍成一個(gè)三角形,當(dāng)該三角形面積最小時(shí),切點(diǎn)為P(如圖).
(1)求點(diǎn)P的坐標(biāo);
(2)焦點(diǎn)在x軸上的橢圓C過點(diǎn)P,且與直線交于A,B兩點(diǎn),若的面積為2,求C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知P是圓M:x2+y2+4x+4-4m2=0(m>0且m≠2)上任意一點(diǎn),點(diǎn)N的坐標(biāo)為(2,0),線段NP的垂直平分線交直線MP于點(diǎn)Q,當(dāng)點(diǎn)P在圓M上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡為C.
(1)求出軌跡C的方程,并討論曲線C的形狀;
(2)當(dāng)m=時(shí),在x軸上是否存在一定點(diǎn)E,使得對(duì)曲線C的任意一條過E的弦AB,為定值?若存在,求出定點(diǎn)和定值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的焦點(diǎn)在軸上,離心率為,且經(jīng)過點(diǎn)
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2) 以橢圓的長軸為直徑作圓,設(shè)為圓上不在坐標(biāo)軸上的任意一點(diǎn),軸上一點(diǎn),過圓心作直線的垂線交橢圓右準(zhǔn)線于點(diǎn).問:直線能否與圓總相切,如果能,求出點(diǎn)的坐標(biāo);如果不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓過點(diǎn)且離心率為
(1)求橢圓的方程;
(2)若斜率為的直線兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓過點(diǎn),兩個(gè)焦點(diǎn)為.
(1)求橢圓的方程;
(2),是橢圓上的兩個(gè)動(dòng)點(diǎn),如果直線的斜率與的斜率互為相反數(shù),證明直線的斜率為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(已知拋物線)的準(zhǔn)線與軸交于點(diǎn)
(1)求拋物線的方程,并寫出焦點(diǎn)坐標(biāo);
(2)是否存在過焦點(diǎn)的直線(直線與拋物線交于點(diǎn),),使得三角形的面積?若存在,請(qǐng)求出直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:.
(1)求橢圓C的離心率;
(2)設(shè)O為原點(diǎn),若點(diǎn)A在直線,點(diǎn)B在橢圓C上,且,求線段AB長度的最小值.

查看答案和解析>>

同步練習(xí)冊答案