考點(diǎn):對(duì)數(shù)函數(shù)圖象與性質(zhì)的綜合應(yīng)用
專(zhuān)題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)函數(shù)f(x)=log
3(0≤x≤
).把分子變形,利用不等式的性質(zhì)求解運(yùn)算.(2)換元法轉(zhuǎn)化為二次函數(shù)分類(lèi)討論,令f(x)=t,t∈[0,1],
函數(shù)y=[f(x)]
2-af(x)+1=t
2-at+1=(t-
)
2+1
-.
解答:
解:(1)
=
=-1+
∵x∈[0,
],∴1-x∈[
,1],
∈[2,4],∴
∈[1,3]
∴l(xiāng)og
∈[0,1],即所求值域?yàn)閇0,1].
(2)令f(x)=t,t∈[0,1],
函數(shù)y=[f(x)]
2-af(x)+1=t
2-at+1=(t-
)
2+1
-.
設(shè)函數(shù)y=[f(x)]
2-a-f(x)+1的最小值為g(a),
1若a≤0,則當(dāng)t=0時(shí),函數(shù)取到最小值g(a)=1,
由-
=1,得a=-2;
2若0<a<2,則當(dāng)t=
時(shí),函數(shù)取到最小值g(a)=1-
,
由
-=1-
,得a=1
±(舍);
3若a≥2,則當(dāng)t=1時(shí),函數(shù)取到最小值g(a)=2-a,
由-
=2-a,解得a=4.
綜上可得:a=-2或a=4.
點(diǎn)評(píng):本題綜合考查了函數(shù)的性質(zhì),不等式性質(zhì),分類(lèi)討論的思想,換元法求解,難度較大,復(fù)雜運(yùn)算.