【題目】如圖,橢圓的左、右焦點分別為,軸,直線軸于點,為橢圓上的動點,的面積的最大值為1.

(1)求橢圓的方程;

(2)過點作兩條直線與橢圓分別交于且使軸,如圖,問四邊形的兩條對角線的交點是否為定點?若是,求出定點的坐標;若不是,請說明理由.

【答案】(1)(2)定點坐標為.

【解析】

(Ⅰ)意味著通徑的一半最大面積為,所以,故橢圓的方程為.

(Ⅱ)根據(jù)對稱性,猜測定點必定在軸上,故可設,則,,再設,根據(jù)三點共線可以得到,聯(lián)立直線和橢圓的標準方程后消去,利用韋達定理可以得到,從而過定點,同理直線也過即兩條直線交于定點.

(Ⅰ)設,由題意可得,即.

的中位線,且,

,即,整理得.①

又由題知,當在橢圓的上頂點時,的面積最大,

,整理得,即,②

聯(lián)立①②可得,變形得,解得,進而.

∴橢圓的方程式為.

(Ⅱ)設,則由對稱性可知,.

設直線軸交于點,直線的方程為,

聯(lián)立,消去,得,

,

三點共線,即,

代入整理得,

,從而,化簡得,解得,于是直線的方程為, 故直線過定點.同理可得過定點,

∴直線的交點是定點,定點坐標為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓上任意一點到兩焦點距離之和為,離心率為

(1)求橢圓的標準方程;

(2)若直線的斜率為,直線與橢圓C交于兩點.點為橢圓上一點,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)當的單調區(qū)間和極值;

(2)若直線是曲線的切線,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)定義域為,設.

1)試確定的取值范圍,使得函數(shù)上為單調函數(shù);

2)求證:;

3)求證:對于任意的,總存在,滿足,并確定這樣的的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為考查某種疫苗預防疾病的效果,進行動物實驗,得到統(tǒng)計數(shù)據(jù)如下:

未發(fā)病

發(fā)病

總計

未注射疫苗

20

注射疫苗

30

總計

50

50

100

現(xiàn)從所有試驗動物中任取一只,取到“注射疫苗”動物的概率為.

1)求列聯(lián)表中的數(shù)據(jù),的值;

2)能夠有多大把握認為疫苗有效?

(參考公式,)

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=-x2+ef′(x

(Ⅰ)求fx)的單調區(qū)間;

(Ⅱ)若存在x1x2x1x2),使得fx1+fx2=1,求證:x1+x22

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校學生會為了解該校學生對2017年全國兩會的關注情況,隨機調查了該校200名學生,并將這200名學生分為對兩會“比較關注”與“不太關注”兩類.已知這200名學生中男生比女生多20人,對兩會“比較關注”的學生中男生人數(shù)與女生人數(shù)之比為,對兩會“不太關注”的學生中男生比女生少5人.

(1)根據(jù)題意建立列聯(lián)表,并判斷是否有的把握認為男生與女生對兩會的關注有差異?

(2)該校學生會從對兩會“比較關注”的學生中根據(jù)性別進行分層抽樣,從中抽取7人,再從這7人中隨機選出2人進行回訪,求這2人全是男生的概率.

參考公式和數(shù)據(jù):,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出停課不停學的口號,鼓勵學生線上學習.某校數(shù)學教師為了調查高三學生數(shù)學成績與線上學習時間之間的相關關系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數(shù)學時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:

分數(shù)不少于120

分數(shù)不足120

合計

線上學習時間不少于5小時

4

19

線上學習時間不足5小時

合計

45

1)請完成上面列聯(lián)表;并判斷是否有99%的把握認為高三學生的數(shù)學成績與學生線上學習時間有關;

2)在上述樣本中從分數(shù)不少于120分的學生中,按照分層抽樣的方法,抽到線上學習時間不少于5小時和線上學習時間不足5小時的學生共5名,若在這5名學生中隨機抽取2人,求至少1人每周線上學習時間不足5小時的概率.

(下面的臨界值表供參考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式 其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中a∈R.

(Ⅰ)討論函數(shù)的單調性;

(Ⅱ)當 時,設、為曲線上任意兩點,曲線在點處的切線斜率為k,證明:

查看答案和解析>>

同步練習冊答案