已知θ∈(0,π),sinθ+cosθ=
3
-1
2
,則tanθ的值為( 。
A、-
3
或-
3
3
B、-
3
3
C、-
3
D、-
3
2
考點:同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:把已知等式兩邊平方,利用完全平方公式及同角三角函數(shù)間的基本關(guān)系化簡,求出2sinθcosθ的值,再利用完全平方公式及同角三角函數(shù)間的基本關(guān)系求出sinθ-cosθ的值,聯(lián)立求出sinθ與cosθ的值,即可確定出tanθ的值.
解答: 解:把sinθ+cosθ=
3
-1
2
①,兩邊平方得:1+2sinθcosθ=
4-2
3
4
=
2-
3
2
,即2sinθcosθ=-
3
2
<0,
∵θ∈(0,π),
∴sinθ>0,cosθ<0,
∴(sinθ-cosθ)2=1-2sinθcosθ=
2+
3
2
,
開方得:sinθ-cosθ=
3
+1
2
②,
①+②得:2sinθ=
3
,即sinθ=
3
2
,
①-②得:2cosθ=-1,即cosθ=-
1
2
,
則tanθ=-
3

故選:C.
點評:此題考查了同角三角函數(shù)基本關(guān)系的運用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=sin(
2
π
x+α)(0<α<2π)是奇函數(shù),則方程f(x)=lgx解的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱柱ABC-A1B1C1中,E,F(xiàn),D分別是AA1,AC,BB1的中點,求證:CD∥平面BEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,求證:
a2-b2
c2
=
sin(A-B)
sinC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=e-xsinx,求dy.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x||x-a|≤1}與B={x||2x-5|≥3},且A∩B=O,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+a|x-b|-1(x∈R).
(1)若函數(shù)f(x)為偶函數(shù),求實數(shù)b的值;
(2)在(1)的條件下,若函數(shù)f(x)在(0,+∞)不單調(diào),求實數(shù)a的取值范圍;
(3)當(dāng)a=1時,先求函數(shù)f(x)的最小值g(b),再判斷并證明函數(shù)g(b)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平行六面體ABCD-A1B1C1D1中,以頂點A為端點的三條棱長度都為2,且兩兩夾角為60°,則DB1和C1A1所成角大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,AA1=a,E、F分別是BC、DC的中點,則AD1與EF所成的角的大小為( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

同步練習(xí)冊答案